Advertisement

Climate Dynamics

, Volume 49, Issue 11–12, pp 4263–4280 | Cite as

Basinwide response of the Atlantic Meridional Overturning Circulation to interannual wind forcing

  • Jian ZhaoEmail author
Article

Abstract

An eddy-resolving Ocean general circulation model For the Earth Simulator (OFES) and a simple wind-driven two-layer model are used to investigate the role of momentum fluxes in driving the Atlantic Meridional Overturning Circulation (AMOC) variability throughout the Atlantic basin from 1950 to 2010. Diagnostic analysis using the OFES results suggests that interior baroclinic Rossby waves and coastal topographic waves play essential roles in modulating the AMOC interannual variability. The proposed mechanisms are verified in the context of a simple two-layer model with realistic topography and only forced by surface wind. The topographic waves communicate high-latitude anomalies into lower latitudes and account for about 50% of the AMOC interannual variability in the subtropics. In addition, the large scale Rossby waves excited by wind forcing together with topographic waves set up coherent AMOC interannual variability patterns across the tropics and subtropics. The comparisons between the simple model and OFES results suggest that a large fraction of the AMOC interannual variability in the Atlantic basin can be explained by wind-driven dynamics.

Keywords

Atlantic Meridional Overturning Circulation Low-frequency change Wind forcing Rossby wave 

Notes

Acknowledgements

This study greatly benefits from my advisor Dr. William Johns. Without his encouragement, guidance, insightful inputs and support, this work would not be possible. Also, comments from Dr. Benjamin Kirtman, Dr. Igor Kamenkovich, and Dr. Christopher Meinen help to improve the manuscript. The OFES simulation was conducted on the Earth Simulator under the support of JAMSTEC. Support for this work provided by the U.S. National Science Foundation (NSF) under Grant 0728108 is gratefully acknowledged.

References

  1. Baehr J, Hirschi J, Beismann JO, Marotzke J (2004) Monitoring the meridional overturning circulation in the North Atlantic: A model-based array design study. J Mar Res 62:283–312. doi: 10.1357/0022240041446191 CrossRefGoogle Scholar
  2. Biastoch, A, Böning CW, Getzlaff J, Molines J-M, Madec G (2008) Causes of interannual–decadal variability in the meridional overturning circulation of the midlatitude north Atlantic ocean. J Climate 21:6599–6615. doi: 10.1175/2008JCLI2404.1 CrossRefGoogle Scholar
  3. Bingham RJ, Hughes CW, Roussenov V, Williams RG (2007) Meridional coherence of the North Atlantic Meridional Overturning Circulation. Geophys Res Lett 34:L23606. doi: 10.1029/2007GL031731 CrossRefGoogle Scholar
  4. Böning CW, Scheinert M, Dengg J, Biastoch A, Funk A (2006) Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys Res Lett 33:L21S01. doi: 10.1029/2006GL026906 CrossRefGoogle Scholar
  5. Bower AS, Lozier MS, Gary SF, Böning CW (2009) Interior pathways of the North Atlantic Meridional Overturning Circulation. Nature 459:243–248. doi: 10.1038/nature07979 CrossRefGoogle Scholar
  6. Bryan K (1982) Seasonal variation in meridional overturning and poleward heat transport in the Atlantic and Pacific Oceans: a model study. J Mar Res 40:39–53Google Scholar
  7. Cabanes C, Lee T, Fu L-L (2008) Mechanisms of interannual variations of the meridional overturning circulation of the north Atlantic ocean. J Phys Oceanogr 38:467–480. doi: 10.1175/2007JPO3726.1 CrossRefGoogle Scholar
  8. Cheng W, Chiang JC, Zhang D (2013) Atlantic Meridional Overturning Circulation (AMOC) in CMIP5 models: RCP and historical simulations. J Climate, 26, 7187–7197. doi: 10.1175/JCLI-D-12-00496.1 CrossRefGoogle Scholar
  9. Chiang JCH, Vimont DJ (2004) Analogous Pacific and Atlantic meridional modes of tropical atmosphere–Ocean variability. J Climate 17:4143–4158. doi: 10.1175/JCLI4953.1 CrossRefGoogle Scholar
  10. Colin de Verdière A, Huck T (1999) Baroclinic instability: An oceanic wavemaker for interdecadal variability. J Phys Oceanogr 29:893–910. doi: 10.1175/1520-0485(1999)029<0893:BIAOWF>2.0.CO;2 CrossRefGoogle Scholar
  11. Cunningham SA, Kanzow T, Rayner D, et al (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 317:935–938CrossRefGoogle Scholar
  12. Danabasoglu G (2008) On multidecadal variability of the Atlantic Meridional Overturning Circulation in the community climate system model version 3. J Climate 21:5524–5544. doi: 10.1175/2008JCLI2019.1 CrossRefGoogle Scholar
  13. Danabasoglu G, Yeager SG, Bailey D (2014) North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part I: Mean states. Ocean Model 73:76–107. doi: 10.1016/j.ocemod.2013.10.005 CrossRefGoogle Scholar
  14. Delworth TL, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J Climate 6:1993–2011CrossRefGoogle Scholar
  15. DiNezio PN, Gramer LJ, Johns WE, Meinen CS, Baringer MO (2009) Observed interannual variability of the Florida current: wind forcing and the North Atlantic oscillation. J Phys Oceanogr 39:721–736. doi: 10.1175/2008JPO4001.1 CrossRefGoogle Scholar
  16. Dong B-W, Sutton RT (2005) Mechanism of interdecadal thermohaline circulation variability in a coupled ocean–atmosphere GCM. J Climate 18:1117–1135CrossRefGoogle Scholar
  17. Dong S, Garzoli S, Baringer M, Meinen C, Goni G (2009) Interannual variations in the Atlantic Meridional Overturning Circulation and its relationship with the net northward heat transport in the South Atlantic. Geophys Res Lett 36:L20606. doi: 10.1029/2009GL039356 CrossRefGoogle Scholar
  18. Döscher R, Böning CW, Herrmann P (1994) Response of circulation and heat transport in the North Atlantic to changes in thermohaline forcing in northern latitudes: a model study. J Phys Oceanogr 24:2306–2320. doi: 10.1175/1520-0485(1994)024<2306:ROCAHT>2.0.CO;2 CrossRefGoogle Scholar
  19. Duchez A, Hirschi JJM, Cunningham SA, Blaker AT, Bryden HL, de Cuevas B, Atkinson CP, McCarthy GD, Frajka-Williams E, Rayner D, Smeed D, Mizielinski MS (2014) A new index for the Atlantic Meridional Overturning Circulation at 26°N. J Clim 27(17):6439–6455. doi: 10.1175/jcli-d-13-00052.1 CrossRefGoogle Scholar
  20. Eden C, Willebrand J (2001) Mechanism of interannual to decadal variability of the north Atlantic circulation. J Clim 14(10):2266–2280. doi: 10.1175/1520-0442(2001)014<2266:MOITDV>2.0.CO;2 CrossRefGoogle Scholar
  21. Gerdes R, Köberle C (1995) On the influence of DSOW in a numerical model of the north Atlantic general circulation. J Phys Oceanogr 25:2624–2642. doi: 10.1175/1520-0485(1995)025<2624:OTIODI>2.0.CO;2 CrossRefGoogle Scholar
  22. Getzlaff J, Böning CW, Eden C, Biastoch A (2005) Signal propagation related to the North Atlantic overturning. Geophys Res Lett 32:L09602. doi: 10.1029/2004GL021002 CrossRefGoogle Scholar
  23. Häkkinen, S. (1999), Variability of the simulated meridional heat transport in the North Atlantic for the period 1951–1993, J Geophys Res 104(C5):10991–11007. doi: 10.1029/1999JC900034 Google Scholar
  24. Hirschi J, Marotzke J (2007) Reconstructing the meridional overturning circulation from boundary densities and the zonal wind stress. J Phys Oceanogr 37:743–763. doi: 10.1175/JPO3019.1 CrossRefGoogle Scholar
  25. Hirschi JJ, Killworth PD, Blundell JR (2007) Subannual, seasonal, and interannual variability of the north Atlantic Meridional Overturning Circulation. J Phys Oceanogr 37:1246–1265. doi: 10.1175/JPO3049.1 CrossRefGoogle Scholar
  26. Hirschi JJ-M, Blaker AT, Sinha B, Coward A, de Cuevas B, Alderson S, Madec G (2012) Chaotic variability of the meridional overturning circulation on subannual to interannual timescales. Ocean Sci Discuss 9:3191–3238. doi: 10.5194/osd-9-3191-2012, 2012.CrossRefGoogle Scholar
  27. Hsieh WW, Davey MK, Wajsowicz RC (1983) The free Kelvin wave in finite-difference numerical models. J Phys Oceanogr 13:1383–1397CrossRefGoogle Scholar
  28. Huck T, Arzel O, Sévellec F (2015) Multidecadal variability of the overturning circulation in presence of eddy turbulence. J Phys Oceanogr 45:157–173. doi: 10.1175/JPO-D-14-0114.1 CrossRefGoogle Scholar
  29. Hurrell JW, Kushnir Y, Visbeck M (2001) The North Atlantic Oscillation. Science 291(5504):603–605CrossRefGoogle Scholar
  30. Jayne SR, Marotzke J (2001) The dynamics of ocean heat transport variability. Rev Geophys 39:385–411CrossRefGoogle Scholar
  31. Johns WE, Baringer MO, Beal LM et al (2011) Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J Climate 24:2429–2449. doi: 10.1175/2010JCLI3997.1 CrossRefGoogle Scholar
  32. Johnson HL, Marshall DP (2002) A theory for the surface Atlantic response to thermohaline variability. J Phys Oceanogr 32:1121–1132. doi: 10.1175/1520-0485(2002)032<1121:ATFTSA>2.0.CO;2 CrossRefGoogle Scholar
  33. Kanzow T, Cunningham SA, Rayner D et al (2007) Observed flow compensation associated with the MOC at 26.5°N in the Atlantic. Science 317:938–941CrossRefGoogle Scholar
  34. Kanzow T, Johnson HL, Marshall DP, Cunningham SA, J. J.-M. Hirschi, Mujahid A, Bryden HL, Johns WE (2009) Basinwide integrated volume transports in an eddy-filled ocean. J Phys Oceanogr 39:3091–3110. doi: 10.1175/2009JPO4185.1 CrossRefGoogle Scholar
  35. Kanzow T, Cunningham SA, Johns WE et al (2010) Seasonal variability of the Atlantic Meridional Overturning Circulation at 26.5°N. J Climate 23:5678–5698. doi: 10.1175/2010JCLI3389.1 CrossRefGoogle Scholar
  36. Kawase M (1987) Establishment of deep ocean circulation driven by deep-water production. J Phys Oceanogr 17:2294–2317. doi: 10.1175/1520-0485(1987)017<2294:EODOCD>2.0.CO;2 CrossRefGoogle Scholar
  37. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett. doi: 10.1029/2005gl024233.Google Scholar
  38. Köhl A (2005) Anomalies of meridional overturning: Mechanisms in the North Atlantic. J Phys Oceanogr 35:1455–1472CrossRefGoogle Scholar
  39. Köhl A, Stammer D (2008) Variability of the meridional overturning in the north Atlantic from the 50-year GECCO state estimation. J Phys Oceanogr 38:1913–1930. doi: 10.1175/2008JPO3775.1 CrossRefGoogle Scholar
  40. Marshall DP, Johnson HL (2013) Propagation of meridional circulation anomalies along western and eastern boundaries. J Phys Oceanogr 43:2699–2717CrossRefGoogle Scholar
  41. Masumoto Y (2010) Sharing the results of a high-resolution ocean general circulation model under a multi-discipline framework—a review of OFES activities. Ocean Dynamics 60:633–652 doi: 10.1007/s10236-010-0297-z CrossRefGoogle Scholar
  42. Masumoto Y, Sasaki H, Kagimoto T, Komori N, Ishida A, Sasai Y, Miyama T, Motoi T, Mitsudera H, Takahashi K, Sakuma H, Yamagata T (2004) A fifty-year eddy-resolving simulation of the world ocean—preliminary outcomes of OFES (OGCM for the Earth Simulator). J Earth Simulator 1:35–56Google Scholar
  43. Rayner D et al (2011) Monitoring the Atlantic Meridional Overturning Circulation. Deep Sea Res 58(17–18):1744–1753CrossRefGoogle Scholar
  44. Sasaki H, Nonaka M, Masumoto Y, Sasai Y, Uehara H, Sakuma H (2008) An eddy-resolving hindcast simulation of the quasiglobal ocean from 1950 to 2003 on the Earth Simulator. In: Hamilton K, Ohfuchi W (eds) High resolution numerical modelling of the atmosphere and ocean, Chap. 10. Springer, New York, pp 157–185CrossRefGoogle Scholar
  45. Sévellec F, Fedorov AV (2013) The leading, interdecadal eigenmode of the Atlantic Meridional Overturning Circulation in a realistic ocean model. J Climate 26:2160–2183. doi: 10.1175/JCLI-D-11-00023.1 CrossRefGoogle Scholar
  46. Sinha B, Topliss B, Blaker AT, Hirschi J-M (2013) A numerical model study of the effects of interannual time scale wave propagation on the predictability of the Atlantic Meridional Overturning Circulation. J Geophys Res Oceans 118:131–146. doi: 10.1029/2012JC008334 CrossRefGoogle Scholar
  47. Smeed DA, McCarthy G, Cunningham SA, Frajka-Williams E, Rayner D, Johns WE, Meinen CS, Baringer MO, Moat BI, Duchez A, Bryden HL (2014) Observed decline of the Atlantic Meridional Overturning Circulation 2004–2012. Ocean Sci 10(1):29–38. doi: 10.5194/os-10-29-2014
  48. Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118. doi: 10.1126/Science.1109496 CrossRefGoogle Scholar
  49. te Raa LA, Dijkstra HA (2002) Instability of the thermohaline ocean circulation on interdecadal timescales. J Phys Oceanogr 32:138–160. doi: 10.1175/1520-0485(2002)032<0138:IOTTOC>2.0.CO;2 CrossRefGoogle Scholar
  50. Thomas MD, Zhai X (2013) Eddy-induced variability of the meridional overturning circulation in a model of the North Atlantic. Geophys Res Lett 40:2742–2747. doi: 10.1002/grl.50532 CrossRefGoogle Scholar
  51. van Sebille E, Baringer MO, Johns WE, Meinen CS, Beal LM, de Jong MF, van Aken HM (2011) Propagation pathways of classical Labrador Sea water from its source region to 26°N. J Geophys Res 116:C12027. doi: 10.1029/2011JC007171
  52. Willebrand J, Barnier B, Böning C, Dieterich C, Killworth PD, Le Provost C, Jia Y, Molines JM, New AL (2001) Circulation characteristics in three eddy-permitting models of the North Atlantic. Prog Oceanogr 48(2):123–161CrossRefGoogle Scholar
  53. Yeager S, Danabasoglu G (2012) Sensitivity of Atlantic Meridional Overturning Circulation variability to parameterized nordic sea overflows in CCSM4. J Climate 25:2077–2103. doi: 10.1175/JCLI-D-11-00149.1 CrossRefGoogle Scholar
  54. Yeager S, Danabasoglu G (2014) The origins of late-twentieth-century variations in the large-scale north Atlantic circulation. J Climate 27:3222–3247. doi: 10.1175/JCLI-D-13-00125.1 CrossRefGoogle Scholar
  55. Zhai X, Johnson HL, Marshall DP (2014) A simple model of the response of the Atlantic to the North Atlantic Oscillation. J Clim 27:4052–4069. doi: 10.1175/JCLI-D-13-00330.1
  56. Zhang R (2010) Latitudinal dependence of Atlantic Meridional Overturning Circulation (AMOC) variations. Geophys Res Lett 37:L16703. doi: 10.1029/2010GL044474 Google Scholar
  57. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi: 10.1029/2006GL026267 CrossRefGoogle Scholar
  58. Zhang L, Wang C (2013) Multidecadal North Atlantic sea surface temperature and Atlantic Meridional Overturning Circulation variability in CMIP5 historical simulations. J Geophys Res Oceans 118:5772–5791. doi: 10.1002/jgrc.20390 CrossRefGoogle Scholar
  59. Zhang R, Delworth TL, Rosati A, Anderson WG, Dixon KW, Lee H-C, Zeng F (2011) Sensitivity of the North Atlantic Ocean Circulation to an abrupt change in the Nordic Sea overflow in a high resolution global coupled climate model. J Geophys Res 116:C12024. doi: 10.1029/2011JC007240
  60. Zhang L, Wang C, Lee S-K (2014) Potential role of Atlantic warm pool-induced freshwater forcing in the Atlantic Meridional Overturning Circulation: ocean–sea ice model simulations. Climate Dynamics. doi: 10.1007/s00382-013-2034-z Google Scholar
  61. Zhao J, Johns WE (2014a) Wind driven seasonal cycle of the Atlantic Meridional Overturning Circulation. J Phys Oceanogr. doi: 10.1175/JPO-D-13-0144.1 Google Scholar
  62. Zhao J, Johns W (2014b) Wind-forced interannual variability of the Atlantic Meridional Overturning Circulation at 26.5°N. J Geophys Res Oceans 119:2403–2419. doi: 10.1002/2013JC009407 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA
  2. 2.Department of Physical OceanographyWoods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations