The role of atmospheric heat transport and regional feedbacks in the Arctic warming at equilibrium

  • Masakazu Yoshimori
  • Ayako Abe-Ouchi
  • Alexandre Laîné
Article

Abstract

It is well known that the Arctic warms much more than the rest of the world even under spatially quasi-uniform radiative forcing such as that due to an increase in atmospheric CO2 concentration. While the surface albedo feedback is often referred to as the explanation of the enhanced Arctic warming, the importance of atmospheric heat transport from the lower latitudes has also been reported in previous studies. In the current study, an attempt is made to understand how the regional feedbacks in the Arctic are induced by the change in atmospheric heat transport and vice versa. Equilibrium sensitivity experiments that enable us to separate the contributions of the Northern Hemisphere mid-high latitude response to the CO2 increase and the remote influence of surface warming in other regions are carried out. The result shows that the effect of remote forcing is predominant in the Arctic warming. The dry-static energy transport to the Arctic is reduced once the Arctic surface warms in response to the local or remote forcing. The feedback analysis based on the energy budget reveals that the increased moisture transport from lower latitudes, on the other hand, warms the Arctic in winter more effectively not only via latent heat release but also via greenhouse effect of water vapor and clouds. The change in total atmospheric heat transport determined as a result of counteracting dry-static and latent heat components, therefore, is not a reliable measure for the net effect of atmospheric dynamics on the Arctic warming. The current numerical experiments support a recent interpretation based on the regression analysis: the concurrent reduction in the atmospheric poleward heat transport and future Arctic warming predicted in some models does not imply a minor role of the atmospheric dynamics. Despite the similar magnitude of poleward heat transport change, the Arctic warms more than the Southern Ocean even in the equilibrium response without ocean dynamics. It is shown that a large negative shortwave cloud feedback over the Southern Ocean, greatly influenced by low-latitude surface warming, is responsible for this asymmetric polar warming.

References

  1. Alexeev VA, Langen PL, Bates JR (2005) Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Clim Dyn 24:655–666. doi:10.1007/s00382-005-0018-3 CrossRefGoogle Scholar
  2. Alexeev VA, Esau I, Polyakov IV, Byam SJ, Sorokina S (2012) Vertical structure of recent arctic warming from observed data and reanalysis products. Clim Change 111:215–239. doi:10.1007/s10584-011-0192-8 CrossRefGoogle Scholar
  3. Armour KC, Marshall J, Scott JR, Donohoe A, Newsom ER (2016) Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat Geosci 9:549–554. doi:10.1038/ngeo2731 CrossRefGoogle Scholar
  4. Bitz CM, Fu Q (2008) Arctic warming aloft is data set dependent. Nature 455:E3–E4. doi:10.1038/nature07258 CrossRefGoogle Scholar
  5. Bony S, Colman R, Kattsov VM, Allan RP, Bretherton CS, Dufresne JL, Hall A, Hallegatte S, Holland MM, Ingram W, Randall DA, Soden BJ, Tselioudis G, Webb MJ (2006) How well do we understand and evaluate climate change feedback processes? J Clim 19:3445–3482. doi:10.1175/jcli3819.1 CrossRefGoogle Scholar
  6. Cai M (2005) Dynamical amplification of polar warming. Geophys Res Lett 32, Artn L22710. doi:10.1029/2005gl024481
  7. Cai M, Lu JH (2009) A new framework for isolating individual feedback processes in coupled general circulation climate models. Part II: method demonstrations and comparisons. Clim Dyn 32:887–900. doi:10.1007/s00382-008-0424-4 CrossRefGoogle Scholar
  8. Chung CE, Räisänen P (2011) Origin of the Arctic warming in climate models. Geophys Res Lett 38. doi:10.1029/2011gl049816
  9. Crook JA, Forster PM, Stuber N (2011) Spatial patterns of modeled climate feedback and contributions to temperature response and polar amplification. J Clim 24:3575–3592. doi:10.1175/2011jcli3863.1 CrossRefGoogle Scholar
  10. Grant AN, Bronnimann S, Haimberger L (2008) Recent Arctic warming vertical structure contested. Nature 455:E2–E3. doi:10.1038/nature07257 CrossRefGoogle Scholar
  11. Graversen RG, Burtu M (2016) Arctic amplification enhanced by latent energy transport of atmospheric planetary waves. Q J R Meteorol Soc 142:2046–2054. doi:10.1002/qj.2802 CrossRefGoogle Scholar
  12. Graversen RG, Wang MH (2009) Polar amplification in a coupled climate model with locked albedo. Clim Dyn 33:629–643. doi:10.1007/s00382-009-0535-6 CrossRefGoogle Scholar
  13. Graversen RG, Mauritsen T, Tjernstrom M, Kallen E, Svensson G (2008) Vertical structure of recent Arctic warming. Nature 451:53–56. doi:10.1038/nature06502 CrossRefGoogle Scholar
  14. Holland MM, Bitz CM (2003) Polar amplification of climate change in coupled models. Clim Dyn 21:221–232. doi:10.1007/s00382-003-0332-6 CrossRefGoogle Scholar
  15. Hwang YT, Frierson DMW, Kay JE (2011) Coupling between Arctic feedbacks and changes in poleward energy transport. Geophys Res Lett 38, Artn L17704. doi:10.1029/2011gl048546
  16. Keith DW (1995) Meridional energy-transport—uncertainty in zonal means. Tellus Ser A Dyn Meteorol Oceanogr 47:30–44. doi:10.1034/j.1600-0870.1995.00002.x CrossRefGoogle Scholar
  17. Laine A, Nakamura H, Nishii K, Miyasaka T (2014) A diagnostic study of future evaporation changes projected in CMIP5 climate models. Clim Dyn 42:2745–2761. doi:10.1007/s00382-014-2087-7 CrossRefGoogle Scholar
  18. Laîné A, Yoshimori M, Abe-Ouchi A (2016) Surface Arctic amplification factors in CMIP5 models: land and oceanic surfaces, seasonality. J Clim 29:3297–3316. doi:10.1175/JCLI-D-15-0497.1 CrossRefGoogle Scholar
  19. Lu JH, Cai M (2009a) A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I: formulation. Clim Dyn 32:873–885. doi:10.1007/s00382-008-0425-3
  20. Lu JH, Cai M (2009b) Seasonality of polar surface warming amplification in climate simulations. Geophys Res Lett 36. doi:10.1029/2009gl040133, Artn L16704
  21. Lu JH, Cai M (2010) Quantifying contributions to polar warming amplification in an idealized coupled general circulation model. Clim Dyn 34:669–687. doi:10.1007/s00382-009-0673-x CrossRefGoogle Scholar
  22. Mahlstein I, Knutti R (2011) Ocean heat transport as a cause for model uncertainty in projected arctic warming. J Clim 24:1451–1460. doi:10.1175/2010jcli3713.1 CrossRefGoogle Scholar
  23. Marshall J, Armour KC, Scott JR, Kostov Y, Hausmann U, Ferreira D, Shepherd TG, Bitz CM (2014) The ocean’s role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. Philos Trans R Soc A Math Phys Eng Sci 372:17. doi:10.1098/rsta.2013.0040 Google Scholar
  24. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset—a new era in climate change research. Bull Am Meteorol Soc 88:1383. doi:10.1175/Bams-88-9-1383 CrossRefGoogle Scholar
  25. Ogura T, Emori S, Webb MJ, Tsushima Y, Yokohata T, Abe-Ouchi A, Kimoto M (2008a) Towards understanding cloud response in atmospheric GCMs: the use of tendency diagnostics. J Meteorol Soc Jpn 86:69–79. doi:10.2151/jmsj.86.69
  26. Ogura T, Webb MJ, Bodas-Salcedo A, Williams KD, Yokohata T, Wilson DR (2008b) Comparison of cloud response to CO(2) doubling in two GCMs. Sola 4:29–32. doi:10.2151/sola.2008-008
  27. Screen JA, Simmonds I (2011) Erroneous arctic temperature trends in the ERA-40 reanalysis: a closer look. J Clim 24:2620–2627. doi:10.1175/2010jcli4054.1 CrossRefGoogle Scholar
  28. Screen JA, Deser C, Simmonds I (2012) Local and remote controls on observed Arctic warming. Geophys Res Lett 39, Artn L10709. doi:10.1029/2012gl051598
  29. Sejas SA, Cai M, Hu AX, Meehl GA, Washington W, Taylor PC (2014) Individual feedback contributions to the seasonality of surface warming. J Clim 27:5653–5669. doi:10.1175/Jcli-D-13-00658.1 CrossRefGoogle Scholar
  30. Soden BJ, Held IM, Colman R, Shell KM, Kiehl JT, Shields CA (2008) Quantifying climate feedbacks using radiative kernels. J Clim 21:3504–3520. doi:10.1175/2007jcli2110.1 CrossRefGoogle Scholar
  31. Solomon A (2006) Impact of latent heat release on polar climate. Geophys Res Lett 33. doi:10.1029/2005gl025607
  32. Stein U, Alpert P (1993) Factor separation in numerical simulations. J Atmos Sci 50:2107–2115. doi:10.1175/1520-0469(1993)050>2.0.Co;2 CrossRefGoogle Scholar
  33. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of Cmip5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/Bams-D-11-00094.1 CrossRefGoogle Scholar
  34. Taylor PC, Cai M, Hu A, Meehl J, Washington W, Zhang GJ (2013) A decomposition of feedback contributions to polar warming amplification. J Clim 26:7023–7043. doi:10.1175/jcli-d-12-00696.1 CrossRefGoogle Scholar
  35. Thorne PW (2008) Arctic tropospheric warming amplification? Nature 455:E1–E2. doi:10.1038/nature07256 CrossRefGoogle Scholar
  36. Tsushima Y, Emori S, Ogura T, Kimoto M, Webb MJ, Williams KD, Ringer MA, Soden BJ, Li B, Andronova N (2006) Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: a multi-model study. Clim Dyn 27:113–126. doi:10.1007/s00382-006-0127-7 CrossRefGoogle Scholar
  37. Vavrus S (2004) The impact of cloud feedbacks on Arctic climate under greenhouse forcing. J Clim 17:603–615. doi:10.1175/1520-0442(2004)017>2.0.Co;2 CrossRefGoogle Scholar
  38. Yoshimori M, Yokohata T, Abe-Ouchi A (2009) A comparison of climate feedback strength between CO2 doubling and LGM experiments. J Clim 22:3374–3395. doi:10.1175/2009jcli2801.1 CrossRefGoogle Scholar
  39. Yoshimori M, Abe-Ouchi A, Watanabe M, Oka A, Ogura T (2014a) Robust seasonality of Arctic warming processes in two different versions of the MIROC GCM. J Clim 27:6358–6375. doi:10.1175/jcli-d-14-00086.1
  40. Yoshimori M, Watanabe M, Abe-Ouchi A, Shiogama H, Ogura T (2014b) Relative contribution of feedback processes to Arctic amplification of temperature change in MIROC GCM. Clim Dyn 42:1613–1630. doi:10.1007/s00382-013-1875-9
  41. Yoshimori M, Watanabe M, Shiogama H, Oka A, Abe-Ouchi A, Ohgaito R, Kamae Y (2016) A review of progress towards understanding the transient global mean surface temperature response to radiative perturbation. Prog Earth Planet Sci 3:1–14 doi:10.1186/s40645-016-0096-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Faculty of Environmental Earth Science, Global Institution for Collaborative Research and Education, and Arctic Research CenterHokkaido UniversitySapporoJapan
  2. 2.Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan
  3. 3.National Institute of Polar ResearchTokyoJapan
  4. 4.Japan Agency for Marine-Earth Science and TechnologyYokohamaJapan

Personalised recommendations