Skip to main content

The contribution of internal and model variabilities to the uncertainty in CMIP5 decadal climate predictions

Abstract

Decadal climate predictions, which are initialized with observed conditions, are characterized by two main sources of uncertainties—internal and model variabilities. Using an ensemble of climate model simulations from the CMIP5 decadal experiments, we quantified the total uncertainty associated with these predictions and the relative importance of each source. Annual and monthly averages of the surface temperature and zonal wind were considered. We show that different definitions of the anomaly result in different conclusions regarding the variance of the ensemble members. However, some features of the uncertainty are common to all the measures we considered. We found that on decadal time scales, there is no considerable increase in the uncertainty with time. The model variability is more sensitive to the annual cycle than the internal variability. This, in turn, results in a maximal uncertainty during the winter in the northern hemisphere. The uncertainty of the surface temperature prediction is dominated by the model variability, whereas the uncertainty of the zonal wind is determined by both sources. An analysis of the spatial distribution of the uncertainty reveals that the surface temperature has higher variability over land and in high latitudes, whereas the surface zonal wind has higher variability over the ocean. The relative importance of the internal and model variabilities depends on the averaging period, the definition of the anomaly, and the location. The model uncertainties that contribute greatly to the total uncertainties in most regions, for all the variables considered here, may be reduced by weighting the models in the ensemble.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Blázquez J, Nuñez MN (2013) Analysis of uncertainties in future climate projections for South America: comparison of WCRP-CMIP3 and WCRP-CMIP5 models. Clim Dynam 41(3–4):1039–1056. doi:10.1007/s00382-012-1489-7

    Article  Google Scholar 

  • Branstator G, Teng H (2012) Potential impact of initialization on decadal predictions as assessed for CMIP5 models. Geophys Res Lett 39(12):L12,703, doi:10.1029/2012GL051974

  • Bruyère CL, Done JM, Holland GJ, Fredrick S (2014) Bias corrections of global models for regional climate simulations of high-impact weather. Clim Dynam 43(7–8):1847–1856. doi:10.1007/s00382-013-2011-6

    Article  Google Scholar 

  • Cox P, Stephenson D (2007) A changing climate for prediction. Science 317(5835):207–208. doi:10.1126/science.1145956

    Article  Google Scholar 

  • Crétat J, Pohl B, Richard Y, Drobinski P (2012) Uncertainties in simulating regional climate of Southern Africa: sensitivity to physical parameterizations using WRF. Clim Dynam 38(3–4):613–634. doi:10.1007/s00382-011-1055-8

    Article  Google Scholar 

  • Deser C, Phillips AS, Alexander MA, Smoliak BV (2014) Projecting North American climate over the next 50 years: uncertainty due to internal variability. J Clim 27(6):2271–2296. doi:10.1175/JCLI-D-13-00451.1

    Article  Google Scholar 

  • Doblas-Reyes FJ, Andreu-Burillo I, Chikamoto Y, Garcia-Serrano J, Guemas V, Kimoto M, Mochizuki T, Rodrigues LRL, van Oldenborgh GJ (2013) Initialized near-term regional climate change prediction. Nat Commun 4:1715

    Article  Google Scholar 

  • de Elía R, Caya D, Côté H, Frigon A, Biner S, Giguère M, Paquin D, Harvey R, Plummer D (2008) Evaluation of uncertainties in the CRCM-simulated North American climate. Clim Dynam 30(2–3):113–132. doi:10.1007/s00382-007-0288-z

    Article  Google Scholar 

  • Friedlingstein P, Meinshausen M, Arora VK, Jones CD, Anav A, Liddicoat SK, Knutti R (2014) Uncertainties in cmip5 climate projections due to carbon cycle feedbacks. J Clim 27:511–526. doi:10.1175/JCLI-D-12-00579.1

    Article  Google Scholar 

  • Giorgi F, Francisco R (2000a) Evaluating uncertainties in the prediction of regional climate change. Geophys Res Lett 27(9):1295–1298. doi:10.1029/1999GL011016

    Article  Google Scholar 

  • Giorgi F, Francisco R (2000b) Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the HADCM2 coupled AOGCM. Clim Dynam 16(2–3):169–182. doi:10.1007/PL00013733

    Article  Google Scholar 

  • Giorgi F, Mearns LO (2002) Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging”(REA) method. Journal of Climate 15(10):1141–1158

    Article  Google Scholar 

  • Goddard L, Kumar A, Solomon A, Smith D, Boer G, Gonzalez P, Kharin V, Merryfield W, Deser C, Mason SJ, Kirtman BP, Msadek R, Sutton R, Hawkins E, Fricker T, Hegerl G, Ferro CAT, Stephenson DB, Meehl GA, Stockdale T, Burgman R, Greene AM, Kushnir Y, Newman M, Carton J, Fukumori I, Delworth T (2013) A verification framework for interannual-to-decadal predictions experiments. Clim Dynam 40(1–2):245–272. doi:10.1007/s00382-012-1481-2

    Article  Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90(8):1095–1107. doi:10.1175/2009BAMS2607.1

    Article  Google Scholar 

  • Hawkins E, Sutton R (2011) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dynam 37(1–2):407–418. doi:10.1007/s00382-010-0810-6

    Article  Google Scholar 

  • Hawkins E, Sutton R (2016) Connecting climate model projections of global temperature change with the real world. Bull Am Meteorol Soc 97(6):963–980. doi:10.1175/BAMS-D-14-00154.1

    Article  Google Scholar 

  • International CLIVAR Project Office (2011) Data and bias correction for decadal climate predictions.International CLIVAR Project Office, CLIVAR Publication Series No. 150, p 6. http://eprints.soton.ac.uk/171975/1/ICPO150_Bias.pdf. Accessed 23 Feb 2017

  • Jackson C, Sen MK, Stoffa PL (2004) An efficient stochastic Bayesian approach to optimal parameter and uncertainty estimation for climate model predictions. J Clim 17(14):2828–2841

    Article  Google Scholar 

  • Jackson CS, Sen MK, Huerta G, Yi D, Bowman KP (2008) Error reduction and convergence in climate prediction. J Clim 21:6698–6709. doi:10.1175/2008JCLI2112.1

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

    Article  Google Scholar 

  • Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453(7191):84–88. doi:10.1038/nature06921

    Article  Google Scholar 

  • Kharin VV, Zwiers FW (2002) Climate predictions with multimodel ensembles. J Clim 15(7):793–799. doi:10.1175/1520-0442(2002) 015<0793:CPWME>2.0.CO;2

    Article  Google Scholar 

  • Kim HM, Webster PJ, Curry JA (2012) Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts. Geophys Res Lett 39(10):L10,701

  • Kirtman B, Power SB, Adedoyin JA, Boer G, Bojariu R, Camilloni I, Doblas-Reyes FJ, Fiore AM, Kimoto M, Meehl GA, Prather M, Sarr A, SchÃd’r C, Sutton R, van Oldenborgh GJ, Vecchi G, Wang HJ(2013) Near-term climate change: Projections and predictability. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley P(eds) Climate change 2013: the physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Knutti R, Sedláček J (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Change 3:369–373

    Article  Google Scholar 

  • Knutti R, Allen MR, Friedlingstein P, Gregory JM, Hegerl GC, Meehl GA, Meinshausen M, Murphy JM, Plattne GK, Raper SCB, Stocker TF, Stott PA, Teng H, Wigley TML (2008) A review of uncertainties in global temperature projections over the twenty-first century. J Clim 21:2651–2663. doi:10.1175/2007JCLI2119.1

    Article  Google Scholar 

  • Kruschke T, Rust H, Kadow C, Leckebusch G, Ulbrich U (2014) Evaluating decadal predictions of northern hemispheric cyclone frequencies. Tellus A 66(1):22830. doi:10.3402/tellusa.v66.22830

  • Meehl GA, Goddard L, Murphy J, Stouffer RJ, Boer G, Danabasoglu G, Dixon K, Giorgetta MA, Greene AM, Hawkins E, Hegerl G, Karoly D, Keenlyside N, Kimoto M, Kirtman B, Navarra A, Pulwarty R, Smith D, Stammer D, Stockdale T (2009) Decadal prediction. Bull Am Meteorol Soc 90(10):1467–1485

    Article  Google Scholar 

  • Meehl GA, Goddard L, Boer G, Burgman R, Branstator G, Cassou C, Corti S, Danabasoglu G, Doblas-Reyes F, Hawkins E, Karspeck A, Kimoto M, Kumar A, Matei D, Mignot J, Msadek R, Navarra A, Pohlmann H, Rienecker M, Rosati T, Schneider E, Smith D, Sutton R, Teng H, van Oldenborgh GJ, Vecchi G, Yeager S (2014) Decadal climate prediction: an update from the trenches. Bull Am Meteor Soc 95:243–267

    Article  Google Scholar 

  • Miao C, Duan Q, Sun Q, Huang Y, Kong D, Yang T, Ye A, Di Z, Gong W (2014) Assessment of CMIP5 climate models and projected temperature changes over Northern Eurasia. Environ Res Lett 9(5):055,007

  • Monier E, Scott JR, Sokolov AP, Forest CE, Schlosser CA (2013) An integrated assessment modeling framework for uncertainty studies in global and regional climate change: the MIT IGSM-CAM(version 1.0). Geoscientific Model. Development 6(6):2063–2085. doi:10.5194/gmd-6-2063-2013

    Google Scholar 

  • Müller WA, Baehr J, Haak H, Jungclaus JH, Kröger J, Matei D, Notz D, Pohlmann H, von Storch JS, Marotzke J (2012) Forecast skill of multi-year seasonal means in the decadal prediction system of the Max Planck Institute for Meteorology. Geophys Res Lett. doi:10.1029/2012GL053326

  • Müller WA, Pohlmann H, Sienz F, Smith D (2014) Decadal climate predictions for the period 1901–2010 with a coupled climate model. Geophys Res Lett 41(6):2100–2107. doi:10.1002/2014GL059259

    Article  Google Scholar 

  • Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430(7001):768–772. doi:10.1038/nature02771

    Article  Google Scholar 

  • Palmer T, Buizza R, Hagedorn R, Lawrence A, Leutbecher M, Smith L (2006) Ensemble prediction: a pedagogical perspective. ECMWF Newslett 106:10–17

    Google Scholar 

  • Pan Z, Christensen JH, Arritt RW, Gutowski WJ, Takle ES, Otieno F (2001) Evaluation of uncertainties in regional climate change simulations. J Geophys Res Atmos (1984–2012) 106(D16):17,735–17,751

  • Pohlmann H, Jungclaus JH, Kohl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the GECCO oceanic synthesis: effects on the North Atlantic. J Clim 22(14):3926–3938. doi:10.1175/2009JCLI2535.1

    Article  Google Scholar 

  • Räisänen J (2001) CO2-induced climate change in CMIP2 experiments: quantification of agreement and role of internal variability. J Clim 14(9):2088–2104. doi:10.1175/1520-0442(2001) 014<2088:CICCIC>2.0.CO;2

    Article  Google Scholar 

  • Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317(5839):796–799. doi:10.1126/science.1139540

    Article  Google Scholar 

  • Solman SA, Sanchez E, Samuelsson P, da Rocha RP, Li L, Marengo J, Pessacg NL, Remedio ARC, Chou SC, Berbery H, Le Treut H, de Castro M, Jacob D (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Clim Dynam 41(5–6):1139–1157. doi:10.1007/s00382-013-1667-2

    Article  Google Scholar 

  • Strobach E, Bel G (2015) Improvement of climate predictions and reduction of their uncertainties using learning algorithms. Atmos Chem Phys 15:8631–8641. doi:10.5194/acp-15-8631-2015

    Article  Google Scholar 

  • Strobach E, Bel G (2016) Decadal climate predictions using sequential learning algorithms. J Clim 29(10):3787–3809. doi:10.1175/JCLI-D-15-0648.1

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485

    Article  Google Scholar 

  • The NCAR Command Language (Version 6.0.0) [Software], 10.5065/D6WD3XH5, 2011

  • von Storch H, Zwiers, FW (2001) Statistical analysis in climate research. Cambridge University Press, Cambridge, UK, pp 146–150

  • Webster M, Forest C, Reilly J, Babiker M, Kicklighter D, Mayer M, Prinn R, Sarofim M, Sokolov A, Stone P et al (2003) Uncertainty analysis of climate change and policy response. Clim Change 61(3):295–320

    Article  Google Scholar 

  • Xu Z, Yang ZL (2012) An improved dynamical downscaling method with gcm bias corrections and its validation with 30 years of climate simulations. J Clim 25(18):6271–6286. doi:10.1175/JCLI-D-12-00005.1

    Article  Google Scholar 

  • Yang B, Qian Y, Lin G, Leung LR, Rasch PJ, Zhang GJ, McFarlane SA, Zhao C, Zhang Y, Wang H, Wang M, Liu X (2013) Uncertainty quantification and parameter tuning in the CAM5 Zhang-McFarlane convection scheme and impact of improved convection on the global circulation and climate. J Geophys Res Atmos 118(2):395–415. doi:10.1029/2012JD018213

    Article  Google Scholar 

  • Yip S, Ferro CAT, Stephenson DB, Hawkins E (2011) A simple, coherent framework for partitioning uncertainty in climate predictions. J Clim 24(17):4634–4643. doi:10.1175/2011JCLI4085.1

    Article  Google Scholar 

  • Zhao C, Chen S, Leung LR, Qian Y, Kok JF, Zaveri RA, Huang J(2013) Uncertainty in modeling dust mass balance and radiative forcing from size parameterization. Atmos Chem Phys 13(21):10,733–10,753. doi:10.5194/acp-13-10733-2013

Download references

Acknowledgements

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant Number [293825]. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for the CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model outputs. For the CMIP, the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and leads the development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Golan Bel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (5,700 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Strobach, E., Bel, G. The contribution of internal and model variabilities to the uncertainty in CMIP5 decadal climate predictions. Clim Dyn 49, 3221–3235 (2017). https://doi.org/10.1007/s00382-016-3507-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3507-7

Keywords

  • Zonal Wind
  • Couple Model Intercomparison Project Phase
  • Internal Variability
  • Climate Prediction
  • Boreal Winter