Climate Dynamics

, Volume 49, Issue 7–8, pp 2815–2829 | Cite as

Evaluation of the regional climate response in Australia to large-scale climate modes in the historical NARCliM simulations

  • L. FitaEmail author
  • J. P. Evans
  • D. Argüeso
  • A. King
  • Y. Liu


NARCliM (New South Wales (NSW)/Australian Capital Territory (ACT) Regional Climate Modelling project) is a regional climate modeling project for the Australian area. It is providing a comprehensive dynamically downscaled climate dataset for the CORDEX-AustralAsia region at 50-km resolution, and south-East Australia at a resolution of 10 km. The first phase of NARCliM produced 60-year long reanalysis driven regional simulations to allow evaluation of the regional model performance. This long control period (1950–2009) was used so that the model ability to capture the impact of large scale climate modes on Australian climate could be examined. Simulations are evaluated using a gridded observational dataset. Results show that using model independence as a criteria for choosing atmospheric model configuration from different possible sets of parameterizations may contribute to the regional climate models having different overall biases. The regional models generally capture the regional climate response to large-scale modes better than the driving reanalysis, though no regional model improves on all aspects of the simulated climate.


Regional climate modelling Australia Climate modes 



This research was undertaken with the assistance of resources provided at the ‘NCI National Facility’ through the National Computational Merit Allocation Scheme supported by the Australian Government. NARCliM is funded through a consortium of project partners including NSW Office of Environment and Heritage (OEH), ACT Environment and Sustainable Development Directorate, Sydney Water, Sydney Catchment Authority, Hunter Water, NSW Department of Transport, NSW Department of Primary Industry, NSW Office of Water. The work was supported by the Australian Research Council as part of the Future Fellowship FT110100576 and Linkage Project LP120200777. Authors are also gratefully to all the different institutions which compute and provide the global climate indices. Authors also thanks, P. Maher from the ARCCSS-CCRC for the computations of the blocking index.

Supplementary material

382_2016_3484_MOESM1_ESM.pdf (40.5 mb)
Supplementary material 1 (PDF 41519 KB)


  1. Argüeso D, Hidalgo-Muñoz JM, Gámiz-Fortis SR, Esteban-Parra MJ, Castro-Díez Y, Dudhia J (2011) Evaluation of wrf parameterizations for climate studies over southern spain using a multi-step regionalization. J Clim 24:5633–5651CrossRefGoogle Scholar
  2. Bishop CH, Abramowitz G (2013) Climate model dependence and the replicate earth paradigm. Clim Dyn 41:885–900. doi: 10.1007/s00382-012-1610-y CrossRefGoogle Scholar
  3. Boulanger JP, Schlindwein S, Gentile E (2011) Claris lpb wp1: metamorphosis of the CLARIS LPB European project: from a mechanistic to a systemic approach. CLIVAR Exch 16:7–10Google Scholar
  4. Cai W, van Rensch P, Cowan T, Hendon HH (2011) Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J Clim 24(15):3910–3923. doi: 10.1175/2011JCLI4129.1 CrossRefGoogle Scholar
  5. Cai W, van Rensch P, Cowan T, Hendon HH (2012) An asymmetry in the IOD and ENSO teleconnection pathway and its impact on Australian climate. J Clim 25(18):6318–6329. doi: 10.1175/JCLI-D-11-00501.1 CrossRefGoogle Scholar
  6. Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change 81:1–6. doi: 10.1007/s10584-006-9211-6 CrossRefGoogle Scholar
  7. Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Kiehl JT, Briegleb B, Bitz C, Lin SJ, Zhang M, Dai Y (2004) Description of the NCAR community atmosphere model (CAM 3.0). NCAR Technical Note NCAR/TN-464+STR:226Google Scholar
  8. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk M, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli O, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28. doi: 10.1002/qj.776 CrossRefGoogle Scholar
  9. Corney S, Grose M, Bennett JC, White C, Katzfey J, McGregor J, Holz G, Bindoff NL (2013) Performance of downscaled regional climate simulations using a variable-resolution regional climate model: Tasmania as a test case. J Geophys Res 118(21):11936–11950. doi: 10.1002/2013JD020087 Google Scholar
  10. Domínguez M, Romera R, Sánchez E, Fita L, Fernández J, Jiménez-Guerrero P, Montávez JP, Cabos WD, Liguori G, Gaertner MA (2013) Present climate precipitation and temperature extremes over Spain from a set of high resolution RCMs. Climate research 58:149–164. doi: 10.3354/cr01186 CrossRefGoogle Scholar
  11. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107. doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2 CrossRefGoogle Scholar
  12. Evans JP, McCabe MF (2010) Regional climate simulation over Australia’s Murray-Darling basin: a multitemporal assessment. J Geophys Res 115:D14114. doi: 10.1029/2010JD013816 CrossRefGoogle Scholar
  13. Evans JP, McCabe MF (2013) Effect of model resolution impact on regional climate and climate change using WRF over south-east Australia. Clim Res 56:131–145. doi: 10.3354/cr01151 CrossRefGoogle Scholar
  14. Evans JP, Ekström M, Ji F (2012) Evaluating the performance of a WRF physics ensemble over south-east Australia. Clim Dyn 39:1241–1258. doi: 10.1007/s00382-011-1244-5 CrossRefGoogle Scholar
  15. Evans JP, Ji F, Abramowitz G, Ekström M (2013) Optimally choosing small ensemble members to produce robust climate simulations. Environ Res Lett 8:044050. doi: 10.1088/1748-9326/8/4/044050 CrossRefGoogle Scholar
  16. Evans JP, Ji F, Lee C, Smith P, Argüeso D, Fita L (2014) A regional climate modelling projection ensemble experiment–NARCliM. Geosci Model Dev 7(2):621–629. doi: 10.5194/gmd-7-621-2014 CrossRefGoogle Scholar
  17. Fernández J, Montávez JP, Sáenz J, González-Rouco JF, Zorita E (2007) Sensitivity of MM5 mesoscale model to physical parameterizations for regional climate studies: annual cycle. JGR 112(D04):101. doi: 10.1029/2005JD00664 Google Scholar
  18. Feser F, Rockel B, von Storch H, Winterfeldt J, Zahn M (2011) Regional climate models add value to global model data: A review and selected examples. Bull Am Meteor Soc 92:1181–1192. doi: 10.1175/2011BAMS3061.1 CrossRefGoogle Scholar
  19. Fu C, Wang S, Xiong Z, Gutowski WJ, Lee DK, McGregor JL, Sato Y, Kato H, Kim JW, Suh MS (2005) Regional climate model intercomparison project for Asia. Bull Am Meteor Soc 86(2):257–266CrossRefGoogle Scholar
  20. García-Díez M, Fernández J, Fita L, Yagüe C (2012) Seasonal dependence of WRF model biases and sensitivity to pbl schemes over Europe. Q J R Met Soc 139:501–514CrossRefGoogle Scholar
  21. Giorgi F, Mearns LO (1991) Approaches to the simulation of regional climate change: a review. Rev Geophy 29(2):191–216. doi: 10.1029/90RG02636 CrossRefGoogle Scholar
  22. Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183Google Scholar
  23. Hendon HH, Thompson DWJ, Wheeler MC (2007) Australian rainfall and surface temperature variations associated with the Southern hemisphere Annul Mode. J Clim 20(11):2452–2467. doi: 10.1175/JCLI4134.1 CrossRefGoogle Scholar
  24. Hendon HH, Lim EP, Nguyen H (2014) Seasonal variations of subtropical precipitation associated with the Southern Annular Mode. J Clim 27(9):3446–3460. doi: 10.1175/JCLI-D-13-00550.1 CrossRefGoogle Scholar
  25. Herrera S, Fita L, Fernández J, Gutiérrez JM (2010) Evaluation of the mean and extreme precipitation regimes from the ensembles regional climate multimodel simulations over Spain. J Geophys Res 115(D21):117CrossRefGoogle Scholar
  26. Hewitt CD (2005) The ENSEMBLES project: providing ensemble-based predictions of climate changes and their impacts. EGGS Newsl 13:22–25Google Scholar
  27. Hong SY, Kanamitsu M (2014) Dynamical downscaling: fundamental issues from an NWP point of view and recommendations. Asia Pac J Atmos Sci 50(1):83–104. doi: 10.1007/s13143-014-0029-2 CrossRefGoogle Scholar
  28. Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice-microphysical processes for the bulk parameterization of cloud and precipitation. Mon Weather Rev 132:103–120CrossRefGoogle Scholar
  29. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Wea Rev 134:2318–2341CrossRefGoogle Scholar
  30. Janjić ZI (1994) The step-mountain eta coordinate model: further developments of the convection. Mon Weather Rev 122:927–945CrossRefGoogle Scholar
  31. Janjić ZI (1996) The surface layer in the NCEP eta model. Eleventh Conference on Numerical Weather Prediction, Norfolk, VA, 1923 August. American Meteor Society, Boston, MA, pp 354–355Google Scholar
  32. Janjić ZI (2000) Comments on development and evaluation of a convection scheme for use in climate models. J Atmos Sci 57:3686CrossRefGoogle Scholar
  33. Jerez S, Montávez JP, Gómez-Navarro JJ, Lorente-Plazas R, Garcia-Valero JA, Jiménez-Guerrero P (2013) A multi-physics ensemble of regional climate change projections over the Iberian peninsula. Clim Dyn 41(7):1749–1768. doi: 10.1007/s00382-012-1551-5 CrossRefGoogle Scholar
  34. Ji F, Ekström M, Evans JP, Teng J (2014) Evaluating rainfall patterns using physics scheme ensembles from a regional atmospheric model. Theor Appl Climatol 115(1–2):297–304. doi: 10.1007/s00704-013-0904-2 CrossRefGoogle Scholar
  35. Ji F, Evans JP, Teng J, Scorgie Y, Argüeso D, Luca AD, Olson R (2016) Evaluation of long-term precipitation and temperature WRF simulations for southeast Australia. Clim Res 67:99–115CrossRefGoogle Scholar
  36. Jiménez-Guerrero P, Montávez JP, Domínguez M, Romera R, Fita L, Fernández J, Cabos WD, Liguori G, Gaertner MA (2013) Mean fields and interannual variability in RCM simulations over Spain: the ESCENA project. Clim Res 57:201–220CrossRefGoogle Scholar
  37. Jones DA, Trewin BC (2000) On the relationships between the el Niño-southern oscillation and Australian land surface temperature. Int J Clim 20(7):697–719. doi: 10.1002/1097-0088(20000615)20:7<697::AID-JOC499>3.0.CO;2-A CrossRefGoogle Scholar
  38. Jones DA, Wang W, Fawcett R (2009) High-quality spatial climate data-sets for Australia. Aust Meteorol Mag 58:233248Google Scholar
  39. Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181CrossRefGoogle Scholar
  40. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project B. Am Meteorol Soc 77:437–471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  41. King AD, Alexander LV, Donat MG (2013) Asymmetry in the response of eastern Australia extreme rainfall to low-frequency pacific variability. Geophys Res Lett 40(10):2271–2277. doi: 10.1002/grl.50427 CrossRefGoogle Scholar
  42. Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schär C, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V (2014) Regional climate modeling on European scales: a joint standard evaluation of the Euro-CORDEX RCM ensemble. Geosci Model Dev Discuss 7:217–293. doi: 10.5194/gmdd-7-217-2014 CrossRefGoogle Scholar
  43. Lee JW, Hong SY (2014) Potential for added value to downscaled climate extremes over Korea by increased resolution of a regional climate model. Theor Appl Climatol 117:667–677. doi: 10.1007/s00704-013-1034-6 CrossRefGoogle Scholar
  44. Lee JW, Hong SY, Chang EC, Suh MS, Kang HS (2014) Assessment of future climate change over east Asia due to the RCP scenarios downscaled by GRIMS-RMP. Clim Dyn 42:733–747. doi: 10.1007/s00382-013-1841-6 CrossRefGoogle Scholar
  45. Lim EP, Hendon HH (2015) Understanding the contrast of Australian springtime rainfall of 1997 and 2002 in the frame of two flavors of el Niño. J Clim 28(7):2804–2822. doi: 10.1175/JCLI-D-14-00582.1 CrossRefGoogle Scholar
  46. Lim KSS, Hong SY (2010) Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (ccn) for weather and climate models. Mon Weather Rev 138:1587–1612CrossRefGoogle Scholar
  47. Luca AD, de Elía R, Laprise R (2012) Potential for added value in precipitation simulated by high-resolution nested regional climate models and observations. Clim Dyn 38(5–6):1229–1247. doi: 10.1007/s00382-011-1068-3 CrossRefGoogle Scholar
  48. Luca AD, Evans JP, Pepler A, Alexander L, Argüeso D (2015) Resolution sensitivity of cyclone climatology over eastern Australia using six reanalysis products. J Clim 28:9530–9549. doi: 10.1175/JCLI-D-14-00645.1 CrossRefGoogle Scholar
  49. Luca AD, Argüeso D, Evans JP, de Elía R, Laprise R (2016a) Quantifying the overall added value of dynamical downscaling and the contribution from different spatial scales. J Geophys Res 121(4):1575–1590. doi: 10.1002/2015JD024009 Google Scholar
  50. Luca AD, Evans JP, Pepler AS, Alexander L, Argüeso D (2016b) Evaluating the representation of Australian east coast lows in a regional climate model ensemble. J South Hemisphere Earth Syst Sci 66:108–124CrossRefGoogle Scholar
  51. Mearns L, Gutowski WJ, Jones R, Leung R, McGinnis S, Nunes A, Qian Y (2009) A regional climate change assessment program for north America. EOS Trans AGU 90:311–312. doi: 10.1029/2009EO360002 CrossRefGoogle Scholar
  52. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long wave. J Geophys Res 102(D14):16663–16682CrossRefGoogle Scholar
  53. Olson R, Evans JP, Luca AD, Argüeso D (2016) The NARCliM project: Model agreement and significance of climate projections. Clim Res 69:209–227CrossRefGoogle Scholar
  54. Pepler A, Timbal B, Rakich C, Coutts-Smith A (2014) Indian Ocean Dipole overrides ensos influence on cool season rainfall across the eastern seaboard of Australia. J Clim 27:3816–3826. doi: 10.1175/JCLI-D-13-00554.1 CrossRefGoogle Scholar
  55. Pook MJ, Gibson T (1999) Atmospheric blocking and storm tracks during sop-1 of the frost project. Aust Meteor Mag 1:51–60Google Scholar
  56. Power S, Tseitkin F, Torok S, Lavery B, Dahni R, McAvaney B (1998) Australian temperature, Australian rainfall and the southern oscillation, 1910–1992: coherent variability and recent changes. Aust Meteorol Mag 47:85–101Google Scholar
  57. Risbey JS, Pook MJ, McIntosh PC, Wheeler MC, Hendon HH (2009) On the remote drivers of rainfall variability in Australia. Mon Wea Rev 137(10):3233–3253. doi: 10.1175/2009MWR2861.1 CrossRefGoogle Scholar
  58. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Duda DMBMG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR Technical Note 475:NCAR/TN475+STRGoogle Scholar
  59. Solman SA (2013) Regional climate modeling over south America: a review. Adv Meteorol 504357:13. doi: 10.1155/2013/504357 Google Scholar
  60. Stern H, de Hoedt G, Ernst J (2000) Objective classification of Australian climates. Aust Met Mag 49:87–96Google Scholar
  61. von Storch H, Langenberg H, Feser F (2000) A spectral nudging technique for dynamical downscaling purposes. Mon Weather Rev 128(10):3664–3673CrossRefGoogle Scholar
  62. Ummenhofer CC, Gupta AS, Taschetto AS, England MH (2009) Modulation of Australian precipitation by meridional gradients in East Indian Ocean sea surface temperature. J Clim 22(21):5597–5610. doi: 10.1175/2009JCLI3021.1 CrossRefGoogle Scholar
  63. Ummenhofer CC, Gupta AS, Briggs PR, England MH, McIntosh PC, Meyers GA, Pook MJ, Raupach MR, Risbey JS (2011) Indian and Pacific Ocean Influences on Southeast Australian Drought and Soil Moisture. J Clim 24(5):1313–1336. doi: 10.1175/2010JCLI3475.1 CrossRefGoogle Scholar
  64. Vautard R, Gobiet A, Jacob D, Belda M, Colette A, Déqué M, Fernández J, García-Díez M, Goergen K, Güttler I, Halenka T, Karacostas T, Katragkou E, Keuler K, Kotlarski S, Mayer S, van Meijgaard E, Nikulin G, Patarčić M, Scinocca J, Sobolowski S, Suklitsch M, Teichmann C, Warrach-Sagi K, Wulfmeyer V, Yiou P (2013) The simulation of European heat waves from an ensemble of regional climate models within the Euro-CORDEX project. Clim Dyn 41:2555–2575. doi: 10.1007/s00382-013-1714-z CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Climate Change Research CenterUNSWSydneyAustralia
  2. 2.Laboratoire de Météorologique Dynamique (LMD)CNRS, UPMC-JussieuParis Cedex 05France
  3. 3.ARC Centre of Excellence for Climate System ScienceUNSWSydneyAustralia
  4. 4.ARC Centre of Excellence for Climate System Science, School of Earth SciencesUniversity of MelbourneSydneyAustralia

Personalised recommendations