Hindcast skill for the Atlantic meridional overturning circulation at 26.5°N within two MPI-ESM decadal climate prediction systems

Abstract

We analyse the hindcast skill for the Atlantic meridional overturning circulation (AMOC) against 10 years of RAPID/MOCHA AMOC observations, which are now long enough to remove the mean seasonal cycle prior to the hindcast skill analysis. We analyse AMOC hindcast skill in two hindcast ensembles generated with two differently initialised decadal prediction systems that are both based on the earth system model MPI-ESM. We evaluate the hindcast skill for the AMOC and its components in both prediction systems against RAPID/MOCHA observations both with and without the mean seasonal cycle removed using anomaly correlation (COR) and root-mean-square error as skill measures. We find significant hindcast skill for most lead years up to 5 for monthly-mean AMOC variations only in the newer of the two prediction systems and only using COR, but with and without the mean seasonal cycle removed. In both systems and for all analysed lead years, the two geostrophic transport components (the upper-mid-ocean transport and Florida Strait combined, that is: AMOC minus Ekman) are the main source of hindcast skill. In the present model setup and with the currently available observational time series, we cannot relate AMOC hindcast skill to the upper-mid-ocean transport alone. Yet, we can show that the seasonal variability of the upper-mid-ocean transport in the free coupled model originates from eastern boundary density variability. Overall, our results indicate modest yet robust AMOC hindcast skill above the uninitialized simulation, independent of the treatment of the seasonal cycle, although we cannot directly link this hindcast skill to the initialisation of the density field with either initialisation method.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Baehr J, Hirschi J, Beismann JO, Marotzke J (2004) Monitoring the meridional overturning circulation in the North Atlantic: a model-based array design study. J Mar Res 62(3):283–312. doi:10.1357/0022240041446191

    Article  Google Scholar 

  2. Baehr J, Cunnningham S, Haak H, Heimbach P, Kanzow T, Marotzke J (2009) Observed and simulated estimates of the meridional overturning circulation at 26.5°N in the Atlantic. Ocean Sci 5(4):575–589. doi:10.5194/os-5-575-2009

    Article  Google Scholar 

  3. Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc. doi:10.1002/qj.2063

  4. Boer GJ, Kharin VV, Merryfield WJ (2013) Decadal predictability and forecast skill. Clim Dyn 41(7–8):1817–1833. doi:10.1007/s00382-013-1705-0

    Article  Google Scholar 

  5. Bryden HL, Imawaki S (2001) Chapter 6.1 Ocean heat transport. In: Gerold Siedler JC, Geophysics JGBTI (eds) Ocean circulation and climate observing and modelling the global ocean, vol 77. Academic Press, pp 455–474. doi:10.1016/S0074-6142(01)80134-0

  6. Chidichimo MP, Kanzow T, Cunningham SA, Johns WE, Marotzke J (2010) The contribution of eastern-boundary density variations to the Atlantic meridional overturning circulation at 26.5°N. Ocean Sci 6(2):475–490. doi:10.5194/os-6-475-2010

    Article  Google Scholar 

  7. Collins M, Sinha B (2003) Predictability of decadal variations in the thermohaline circulation and climate. Geophys Res Lett 30(6):1306. doi:10.1029/2002GL016504

    Article  Google Scholar 

  8. Collins M, Botzet M, Carril AF, Drange H, Jouzeau A, Latif M, Masina S, Otteraa OH, Pohlmann H, Sorteberg A, Sutton R, Terray L (2006) Interannual to decadal climate predictability in the north atlantic: a multimodel-ensemble study. J Clim 19(7):1195–1203. doi:10.1175/JCLI3654.1

    Article  Google Scholar 

  9. Cunningham SA, Marsh R (2010) Observing and modeling changes in the Atlantic MOC. Wiley Interdiscip Rev Clim Change 1:180–191. doi:10.1002/wcc.22

    Google Scholar 

  10. Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi J, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science (New York, NY) 317(5840):935–8. doi:10.1126/science.1141304

    Article  Google Scholar 

  11. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  12. Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408(6811):453–457. doi:10.1038/35044048

    Article  Google Scholar 

  13. Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg HD, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners KH, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5(3):572–597. doi:10.1002/jame.20038

    Article  Google Scholar 

  14. Hawkins E, Sutton R (2008) Potential predictability of rapid changes in the Atlantic meridional overturning circulation. Geophys Res Lett 35(11):L11603. doi:10.1029/2008GL034059

  15. Hirschi J, Baehr J, Marotzke J, Stark J, Cunningham S, Beismann JO (2003) A monitoring design for the Atlantic meridional overturning circulation. Geophys Res Lett 30(7):1413. doi:10.1029/2002GL016776

    Article  Google Scholar 

  16. Johns WE, Baringer MO, Beal LM, Cunningham SA, Kanzow T, Bryden HL, Hirschi JJM, Marotzke J, Meinen CS, Shaw B, Curry R (2011) Continuous, array-based estimates of atlantic ocean heat transport at 26.5°N. J Clim 24(10):2429–2449. doi:10.1175/2010JCLI3997.1

    Article  Google Scholar 

  17. Jungclaus J, Fischer N, Haak H, Lohmann K, Marotzke J, Matei D, Mikolajewicz U, Notz D, von Storch J (2013) Characteristics of the ocean simulations in MPIOM, the ocean component of the MPI-Earth system model. J Adv Model Earth Syst 5:422–446. doi:10.1002/jame.20023

    Article  Google Scholar 

  18. Kanzow T, Cunningham SA, Rayner D, Hirschi JJM, Johns WE, Baringer MO, Bryden HL, Beal LM, Meinen CS, Marotzke J (2007) Observed flow compensation associated with the MOC at 26.5°N in the Atlantic. Science (New York, NY) 317(5840):938–41. doi:10.1126/science.1141293

    Article  Google Scholar 

  19. Kanzow T, Cunningham SA, Johns WE, Hirschi JJM, Marotzke J, Baringer MO, Meinen CS, Chidichimo MP, Atkinson C, Beal LM, Bryden HL, Collins J (2010) Seasonal variability of the Atlantic meridional overturning circulation at 26.5°N. J Clim 23(21):5678–5698. doi:10.1175/2010JCLI3389.1

    Article  Google Scholar 

  20. Marsland S, Haak H, Jungclaus J, Latif M, Röske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5(2):91–127. doi:10.1016/S1463-5003(02)00015-X

    Article  Google Scholar 

  21. Matei D, Baehr J, Jungclaus JH, Haak H, Müller WA, Marotzke J (2012a) Multiyear prediction of monthly mean Atlantic Meridional Overturning Circulation at 26.5°N. Science (New York, NY) 335(6064):76–9. doi:10.1126/science.1210299

    Article  Google Scholar 

  22. Matei D, Baehr J, Jungclaus JH, Haak H, Müller WA, Marotzke J (2012b) Response to comment on “Multiyear prediction of monthly mean atlantic meridional overturning circulation at 26.5°N”. Science 338(6107):604–604. doi:10.1126/science.1223200

  23. Matei D, Pohlmann H, Jungclaus J, Müller W, Haak H, Marotzke J (2012c) Two tales of initializing decadal climate prediction experiments with the ECHAM5/MPI-OM model. J Clim 25(24):8502–8523. doi:10.1175/JCLI-D-11-00633.1

    Article  Google Scholar 

  24. McCarthy G, Frajka-Williams E, Johns WE, Baringer MO, Meinen CS, Bryden HL, Rayner D, Duchez A, Roberts C, Cunningham SA (2012) Observed interannual variability of the Atlantic meridional overturning circulation at 26.5°N. Geophys Res Lett 39(19):L19609. doi:10.1029/2012GL052933

  25. McCarthy G, Smeed D, Johns W, Frajka-Williams E, Moat B, Rayner D, Baringer M, Meinen C, Collins J, Bryden H (2015) Measuring the Atlantic meridional overturning circulation at 26\(^\circ\)N. Progn Oceanogr 130:91–111. doi:10.1016/j.pocean.2014.10.006

    Article  Google Scholar 

  26. Meinen CS, Baringer MO, Garcia RF (2010) Florida Current transport variability: an analysis of annual and longer-period signals. Deep Sea Res Part I Oceanogr Res Papers 57(7):835–846. doi:10.1016/j.dsr.2010.04.001

    Article  Google Scholar 

  27. Msadek R, Dixon KW, Delworth TL, Hurlin W (2010) Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints. Geophys Res Lett 37(19):L19606. doi:10.1029/2010GL044517

  28. Müller WA, Baehr J, Haak H, Jungclaus JH, Kröger J, Matei D, Notz D, Pohlmann H, von Storch JS, Marotzke J (2012) Forecast skill of multi-year seasonal means in the decadal prediction system of the Max Planck Institute for Meteorology. Geophys Res Lett 39(22):L22707. doi:10.1029/2012GL053326

  29. Pohlmann H, Sienz F, Latif M (2006) Influence of the multidecadal Atlantic meridional overturning circulation variability on European climate. J Clim 19(23):6062–6067. doi:10.1175/JCLI3941.1

    Article  Google Scholar 

  30. Pohlmann H, Müller WA, Kulkarni K, Kameswarrao M, Matei D, Vamborg FSE, Kadow C, Illing S, Marotzke J (2013) Improved forecast skill in the tropics in the new MiKlip decadal climate predictions. Geophys Res Lett 40(21):5798–5802. doi:10.1002/2013GL058051

    Article  Google Scholar 

  31. Rayner D, Hirschi JJM, Kanzow T, Johns WE, Wright PG, Frajka-Williams E, Bryden HL, Meinen CS, Baringer MO, Marotzke J, Beal LM, Cunningham Sa (2011) Monitoring the Atlantic meridional overturning circulation. Deep Sea Res Part II Top Studies Oceanogr 58(17–18):1744–1753. doi:10.1016/j.dsr2.2010.10.056

    Article  Google Scholar 

  32. Rhines P, Häkkinen S, Josey S (2008) Is oceanic heat transport significant in the climate system? In: Dickson RR, Meincke J, Rhines P (eds) ArcticSubarctic ocean fluxes. Springer Netherlands, pp 87–109. doi:10.1007/978-1-4020-6774-7_5

  33. Smeed DA, McCarthy GD, Cunningham SA, Frajka-Williams E, Rayner D, Johns WE, Meinen CS, Baringer MO, Moat BI, Duchez A, Bryden HL (2014) Observed decline of the Atlantic meridional overturning circulation 2004–2012. Ocean Sci 10(1):29–38. doi:10.5194/os-10-29-2014

    Article  Google Scholar 

  34. Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, Salzmann M, Schmidt H, Bader J, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roeckner E (2013) Atmospheric component of the MPI-M Earth System Model: ECHAM6. J Adv Model Earth Syst 5:1–27. doi:10.1002/jame.20015

    Article  Google Scholar 

  35. Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science (New York, NY) 309(5731):115–8. doi:10.1126/science.1109496

    Article  Google Scholar 

  36. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  37. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda Ma, Beljaars ACM, Berg LVD, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  38. Vecchi GA, Msadek R, Delworth TL, Dixon KW, Guilyardi E, Hawkins E, Karspeck AR, Mignot J, Robson J, Rosati A, Zhang R (2012) Comment on “Multiyear prediction of monthly mean Atlantic Meridional Overturning Circulation at 26.5°N”. Science (New York, NY) 338(6107):604. doi:10.1126/science.1222566

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their valuable and helpful comments. This research has been supported by the Cluster of Excellence ‘CliSAP’ (EXC177), University of Hamburg, funded through the German Science Foundation (DFG) (VM, AD, JB), and by the German Federal Ministry for Education and Research (BMBF) projects MiKlip (http://www.fona-miklip.de/en/index.php) (HP, WM) and RACE (http://race.zmaw.de) (DM). The climate simulations were performed at the German Climate Computing Centre (DKRZ). Data from the RAPID-WATCH MOC monitoring project are funded by the Natural Environment Research Council and are freely available from http://www.rapid.ac.uk/rapidmoc.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vasco Müller.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Müller, V., Pohlmann, H., Düsterhus, A. et al. Hindcast skill for the Atlantic meridional overturning circulation at 26.5°N within two MPI-ESM decadal climate prediction systems. Clim Dyn 49, 2975–2990 (2017). https://doi.org/10.1007/s00382-016-3482-z

Download citation

Keywords

  • Decadal predictions
  • Meridional overturning circulation
  • Hindcast skill