Advertisement

Climate Dynamics

, Volume 49, Issue 7–8, pp 2695–2704 | Cite as

The importance of ENSO nonlinearities in tropical pacific response to external forcing

  • Christina KaramperidouEmail author
  • Fei-Fei Jin
  • Jessica L. Conroy
Article

Abstract

Tropical Pacific climate varies at interannual, decadal and centennial time scales, and exerts a significant influence on global climate. Climate model projections exhibit a large spread in the magnitude and pattern of tropical Pacific warming in response to greenhouse-gas forcing. Here, we show that part of this spread can be explained by model biases in the simulation of interannual variability, namely the El Niño/Southern Oscillation (ENSO) phenomenon. We show that models that exhibit strong ENSO nonlinearities simulate a more accurate balance of ENSO feedbacks, and their projected tropical Pacific sea surface temperature warming pattern is closely linked to their projected ENSO response. Within this group, models with ENSO nonlinearity close to observed project stronger warming of the cold tongue, whereas models with stronger than observed ENSO nonlinearity project a more uniform warming of the tropical Pacific. These differences are also manifest in the projected changes of precipitation patterns, thereby highlighting that ENSO simulation biases may lead to potentially biased projections in long-term precipitation trends, with great significance for regional climate adaptation strategies.

Keywords

El Niño ENSO nonlinearity ENSO asymmetry Tropical pacific warming Global climate models 

Notes

Acknowledgements

The authors gratefully acknowledge Dr. S.-T. Kim for providing CMIP5 heat budget analysis data. This work is supported by U.S. National Science Foundation Grants OCN-1304910 and AGS-1602097.

References

  1. An SI, Jin FF (2001) Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J Clim 14:3421–3432. doi: 10.1175/1520-0442(2001)014<3421:CROTAZ>2.0.CO;2 CrossRefGoogle Scholar
  2. An SI, Jin FF (2004) Nonlinearity and asymmetry of ENSO. J Clim 17:2399–2412. doi: 10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2 CrossRefGoogle Scholar
  3. An SI, Ham YG, Kug JS, Jin FF, Kang IS (2005) El Niño-La Niña asymmetry in the coupled model intercomparison project simulations. J Clim 18:​2617–2627. doi: 10.1175/JCLI3433.1 CrossRefGoogle Scholar
  4. Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42(7):1999–2018CrossRefGoogle Scholar
  5. Bony S, Dufresne JL (2005) Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys Res Lett 32:L20806. doi: 10.1029/2005GL023851 CrossRefGoogle Scholar
  6. Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, Timmermann A, Santoso A, McPhaden M, Wu L, England M, Wang G, Guilyardi E, Jin FF (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Chang 4:111–116. doi: 10.1038/nclimate2100 CrossRefGoogle Scholar
  7. Chen L, Yu Y, Sun DZ (2013) Cloud and water vapor feedbacks to the El Niño​ warming: are they still biased in CMIP5 models? J Clim 26(14):4947–4961. doi: 10.1175/JCLI-D-12-00575.1 CrossRefGoogle Scholar
  8. Choi J, An SI, Yeh SW, Yu JY (2013) ENSO-like and ENSO-induced tropical Pacific decadal variability in CGCMs. J Clim 26:1485–1501. doi: 10.1175/JCLI-D-12-00118.1 CrossRefGoogle Scholar
  9. Dewitte B, Thual S, Yeh SW, An SI, Moon BK, Giese B (2011) Low-frequency variability of temperature in the vicinity of the equatorial Pacific thermocline in SODA: role of equatorial wave dynamics and ENSO asymmetry. J Clim 22:5783–5795. doi: 10.1175/2009JCLI2764.1 CrossRefGoogle Scholar
  10. DiNezio P, Clement A, Vecchi G, Soden B, Kirtman B, Lee SK (2009) Climate response of the equatorial pacific to global warming. J Clim 22:4873–4892CrossRefGoogle Scholar
  11. Dong B (2005) Asymmetry between El Niño and La Niña in a Global Coupled GCM with an eddy-permitting ocean resolution. J Clim 18:3373–3387. doi: 10.1175/JCLI3454.1 CrossRefGoogle Scholar
  12. England M, McGregor S, Spence P, Meehl G, Timmermann A, Cai W, Gupta AS, McPhaden M, Purich A, Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Chang 4(3):222–227CrossRefGoogle Scholar
  13. Hawkins E, Sutton R (2010) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn 37(1):407–418. doi: 10.1007/s00382-010-0810-6 Google Scholar
  14. Im SH, An SI, Kim ST, Jin FF (2015) Feedback processes responsible for El Niño-La Niña amplitude asymmetry. Geophys Res Lett 42:5556–5563. doi: 10.1002/2015GL064853 CrossRefGoogle Scholar
  15. Jin FF (1996) Tropical ocean-atmosphere interaction, the pacific cold tongue, and the El Niño-Southern Oscillation. Science 274(5284):76–78. doi: 10.1126/science.274.5284.76 CrossRefGoogle Scholar
  16. Jin FF, An S, Timmermann A, Zhao J (2003) Strong El Niño events and nonlinear dynamical heating. Geophys Res Lett 30(3):1120. doi: 10.1029/2002GL016356 CrossRefGoogle Scholar
  17. Kang IS, Kug JS (2002) El Niño and La Niña sea surface temperature anomalies: asymmetry characteristics associated with their wind stress anomalies. J Geophys Res Atmos 107(D19):4372. doi: 10.1029/2001JD000393 CrossRefGoogle Scholar
  18. Kim ST, Cai W, Jin FF, Yu JY (2014) ENSO stability in coupled climate models and its association with mean state. Clim Dyn 42(11):3313–3321CrossRefGoogle Scholar
  19. Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501(7467):403–407CrossRefGoogle Scholar
  20. Levine A, Jin FF, McPhaden M (2016) Extreme noise-extreme El Niño: how state-dependent noise forcing creates El Niño-La Niña asymmetry. J Clim 29:5483–5499. doi: 10.1175/JCLI-D-16-0091.1 CrossRefGoogle Scholar
  21. Liang J, Yang XQ, Sun DZ (2012) The effect of ENSO events on the tropical pacific mean climate: insights from an analytical model. J Clim 25:​7590–7606. doi: 10.1175/JCLI-D-11-00490.1 CrossRefGoogle Scholar
  22. McGregor S, Timmermann A, Stuecker M, England M, Merrifield M, Jin FF, Chikamoto Y (2014) Recent walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Chang 4(​10):888–892CrossRefGoogle Scholar
  23. Meehl G, Teng H (2014) CMIP5 multi-model hindcasts for the mid-1970s shift and early 2000s hiatus and predictions for 2016–2035. Geophys Res Lett 41(5):1711–1716CrossRefGoogle Scholar
  24. Meehl G, Hu A, Arblaster J, Fasullo J, Trenberth K (2013) Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J Clim 26:​7298–7310. doi: 10.1175/JCLI-D-12-00548.1 CrossRefGoogle Scholar
  25. Merrifield M (2011) A shift in western tropical pacific sea level trends during the 1990s. J Clim 24:4126–4138, doi: 10.1175/2011JCLI3932.1 CrossRefGoogle Scholar
  26. Newman M, Compo G, Alexander M (2003) Enso-forced variability of the pacific decadal oscillation. J Clim 16(23):3853–3857. doi: 10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2 CrossRefGoogle Scholar
  27. Rayner N, Parker D, Horton E, Folland C, Alexander L, Rowell D, Kent E, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  28. Rodgers K, Friederichs P, Latif M (2004) Tropical pacific decadal variability and its relation to decadal modulations of ENSO. J Clim 17:3761–3774. doi: 10.1175/1520-0442(2004)017<3761:TPDVAI>2.0.CO;2 CrossRefGoogle Scholar
  29. Son SW, Lee S (2005) The response of westerly jets to thermal driving in a primitive equation model. J Atmos Sci 62:​3741–3757. doi: 10.1175/JAS3571.1 CrossRefGoogle Scholar
  30. Son SW, Lee S (2006) Preferred modes of variability and their relationship with climate change. J Clim 19​:2063–2075. doi: 10.1175/JCLI3705.1 CrossRefGoogle Scholar
  31. Su J, Zhang R, Li T, Rong X, Kug JS, Hong CC (2010) Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern pacific. J Clim 23:605–617. doi: 10.1175/2009JCLI2894.1 CrossRefGoogle Scholar
  32. Sun DZ (2003) A possible effect of an increase in the warm-pool SST on the magnitude of El Niño warming. J Clim 16:185–205. doi: 10.1175/1520-0442(2003)016<0185:APEOAI>2.0.CO;2 CrossRefGoogle Scholar
  33. Sun DZ, Zhang T (2006) A regulatory effect of ENSO on the time-mean thermal stratification of the equatorial upper ocean. Geophys Res Lett 33:L07710. doi: 10.1029/2005GL025296 CrossRefGoogle Scholar
  34. Sun F, Yu JY (2009) A 10–15-year modulation cycle of ENSO intensity. J Clim 22:​1718–1735. doi: 10.1175/2008JCLI2285.1 CrossRefGoogle Scholar
  35. Sun D, Zhang T, Sun Y, Yu Y (2014) Rectification of El Niño–Southern Oscillation into climate anomalies of decadal and longer time scales: results from forced ocean GCM experiments. J Clim 27:2545–2561. doi: 10.1175/JCLI-D-13-00390.1 CrossRefGoogle Scholar
  36. Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett 38:L10704. doi: 10.1029/2011GL047364CrossRefGoogle Scholar
  37. Timmermann A (1999) Detecting the nonstationary response of ENSO to greenhouse warming. J Atmos Sci 56:2313–2325CrossRefGoogle Scholar
  38. Timmermann A (2003) Decadal ENSO amplitude modulations: a nonlinear paradigm. Glob Planet Chang 37​(1–2):135–156CrossRefGoogle Scholar
  39. Timmermann A, Jin FF (2002) A nonlinear mechanism for decadal El Niño amplitude changes. Geophys Res Lett 29​(1). doi: 10.1029/2001GL013369
  40. Trenberth K, Stepaniak D (2001) Indices of El Niño Evolution. J Clim 14​:1697–1701. doi: 10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2 CrossRefGoogle Scholar
  41. Watanabe M, Shiogama H, Tatebe H, Hayashi M, Ishii M, Kimoto M (2014) Contribution of natural decadal variability to global warming acceleration and hiatus. Nat Clim Chang 4(10)​:893–897CrossRefGoogle Scholar
  42. Yeh SW, Kirtman B (2004) Tropical Pacific decadal variability and ENSO amplitude modulation in a CGCM. J Geophys Res 109​:C11009. doi: 10.1029/2004JC002442 CrossRefGoogle Scholar
  43. Yu JY, Kim S (2011) Reversed spatial asymmetries between El Niño and La Niña and their linkage to decadal ENSO modulation in CMIP3 models. J Clim 24​:5423–5434. doi: 10.1175/JCLI-D-11-00024.1 CrossRefGoogle Scholar
  44. Zhao M, Held I (2012) TC-permitting GCM simulations of hurricane frequency response to sea surface temperature anomalies projected for the late 21st century. J Clim. doi: 10.1175/JCLI-D-11-00313.1

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Atmospheric SciencesUniversity of Hawai’i at MānoaHonoluluUSA
  2. 2.Department of Geology and Department of Plant BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations