Skip to main content

Advertisement

Log in

Tropical Atlantic-Korea teleconnection pattern during boreal summer season

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The remote impact of tropical Atlantic sea surface temperature (SST) variability on Korean summer precipitation is examined based on observational data analysis along with the idealized and hindcast model experiments. Observations show a significant correlation (i.e. 0.64) between Korean precipitation anomalies (averaged over 120–130°E, 35–40°N) and the tropical Atlantic SST index (averaged over 60°W–20°E, 30°S–30°N) during the June–July–August (JJA) season for the 1979–2010 period. Our observational analysis and partial-data assimilation experiments using the coupled general circulation model demonstrate that tropical Atlantic SST warming induces the equatorial low-level easterly over the western Pacific through a reorganization of the global Walker Circulation, causing a decreased precipitation over the off-equatorial western Pacific. As a Gill-type response to this diabatic forcing, an anomalous low-level anticyclonic circulation appears over the Philippine Sea, which transports wet air from the tropics to East Asia through low-level southerly, resulting an enhanced precipitation in the Korean peninsula. Multi-model hindcast experiments also show that predictive skills of Korean summer precipitation are improved by utilizing predictions of tropical Atlantic SST anomalies as a predictor for Korean precipitation anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adler RF et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Ahmed T & Kucharski F (2012) The Influence of Indian Ocean Warming and Soil Moisture Change on the Asian Summer Monsoon

  • Ahn J, Ryu J, Cho E, Park J, Ryoo S (1997) A study of correlations between air-temperature and precipitation in Korea and SST over the tropical Pacific. J Korean Meteorol Soc 33:487–495

    Google Scholar 

  • Berrisford P et al (2011) Atmospheric conservation properties in ERA-Interim. Q J R Meteorolog Soc 137:1381–1399

    Article  Google Scholar 

  • Cha E, Jhun J, Chung H (1999) A study on characteristics of climate in South Korea for El Niño/La Niña years. J Korean Meteorol Soc 35:98–117

    Google Scholar 

  • Chang C-P (2004) East Asian Monsoon, vol. 2. World Scientific, Hackensack

    Google Scholar 

  • Chang C, Zhang Y, Li T (2000) Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: roles of the subtropical ridge. J Clim 13:4310–4325

    Article  Google Scholar 

  • Chikamoto Y, Kimoto M, Watanabe M, Ishii M, Mochizuki T (2012) Relationship between the Pacific and Atlantic stepwise climate change during the 1990s. Geophys Res Lett 39:L21710

    Google Scholar 

  • Chikamoto Y et al (2015) Skilful multi-year predictions of tropical trans-basin climate variability. Nat Commun. doi:10.1038/ncomms7869

    Google Scholar 

  • Chikamoto Y, Modhizuki T, Timmermann A, Kimoto M, & Watanabem M (2016) Potential tropical Atlantic impacts on Pacfic decadal climate trends. Geophys Res Lett 43(13):7143–7151

    Article  Google Scholar 

  • Choi JW, Cha Y, & Kim HD (2016) Interdecadal variation of precipitation days in August in the Korean Peninsula. Dyn Atmos Oceans. doi:10.1016/j.dynatmoce.2016

    Google Scholar 

  • Developers KM (2004) KI coupled GCM (MIROC) description. KI Technical Report, 1.

  • Ding Y (1992) Effects of Qinghai-Xizang (Tibetan) Plateau on the circulation features over the plateau and its surrounding areas. Adv Atmos Sci 9:112–130

    Article  Google Scholar 

  • Ding Y (1994) Monsoons over China Kluwer Academic Publisher Dordrecht Boston London 419

  • Ding Y, & Chan JCL (2005) The East Asian summer monsoon: an overview. Meteor Atmos Phys 89:177–182

    Google Scholar 

  • Ding YH, Li CY, & Liu YJ (2004) Overview of the South China Seas monsoon experiment. Adv Atmos Sci 21:343–360

    Article  Google Scholar 

  • Efron B (1982) The Jackknife, the Bootstrap, and Other Resampling Plans 1–92. Society for Industrial and Applied Mathematics, philadelphia

    Book  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorolog Soc 106:447–462

    Article  Google Scholar 

  • Ham Y-G, Kang I-S, Kim D, Kug J-S (2012) El-Nino Southern Oscillation simulated and predicted in SNU coupled GCMs. ClDy 38:2227–2242

    Google Scholar 

  • Ham Y-G, Kug J-S, Park J-Y, Jin F-F (2013a) Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat Geosci 6:112–116

  • Ham YG, Kug JS, Park JY (2013b) Two distinct roles of Atlantic SSTs in ENSO variability: north tropical Atlantic SST and Atlantic Niño. GeoRL 40:4012–4017

  • Ham Y-G, Schubert SD, & Rienecker MM (2014) An assessment of the skill of GEOS-5 seasonal forecasts

  • Ham Y-G, Kug J-S, Yeh S-W, Kwon M (2016) Impact of two distinct teleconnection patterns induced by western Central Pacific SST anomalies on Korean temperature variability during the early boreal summer. J Clim 29:743–759

    Article  Google Scholar 

  • Ho C-H, Lee J-Y, Ahn M-H, Lee H-S (2003) A sudden change in summer rainfall characteristics in Korea during the late 1970s. Int J Climatol 23:117–128

    Article  Google Scholar 

  • Hong S, Kang I-S, Choi I, Ham Y-G (2013) Climate responses in the tropical Pacific associated with Atlantic warming in recent decades. Asia Pac J Atmos Sci 49:209–217

    Article  Google Scholar 

  • Huang R, Sun F (1992) Impacts of the tropical western Pacific on the East Asian summer monsoon. J Meteor Soc Jpn 70:243–256

    Article  Google Scholar 

  • Huang R, Wu Y (1989) The influence of ENSO on the summer climate change in China and its mechanism. Adv Atmos Sci 6:21–32

    Article  Google Scholar 

  • Ishii M, Kimoto M (2009) Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J Oceanogr 65(3):287–299

    Article  Google Scholar 

  • Jeong H-I et al (2012) Assessment of the APCC coupled MME suite in predicting the distinctive climate impacts of two flavors of ENSO during boreal winter. Clim Dyn 39:475–493

    Article  Google Scholar 

  • Kang I-S (1998) Relationship between El-Nino and Korean climate variability. J Korean Meteorol Soc 34:390–396

    Google Scholar 

  • Kang I, An S, & Jin F (1999) Roles of thermal advective processes in the SST anomalies of ENSO appearing in NCEP ocean assimilation data. Submitted to. ClDy.

  • Keenlyside NS, Ding H, Latif M (2013) Potential of equatorial Atlantic variability to enhance El Niño prediction. Geophys Res Lett 40:2278–2283

    Article  Google Scholar 

  • Kim C-S, & Shu M-S (2008) Change-point in the recent (1976–2005) precipitation over South Korea. Atmosphere 18:110–120

    Google Scholar 

  • Kim J-H., Ho C-H, Lee M-H, Jeong J-H, & Chen D (2006) Large increase in heavy rainfall associated with tropical cyclone landfalls in Korea after the late 1970s. Geophys Res Lett 33:L18706

    Google Scholar 

  • Kosaka Y, Nakamura H (2006) Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Q J R Meteorolog Soc 132:2009–2030

    Article  Google Scholar 

  • Kosaka Y, Xie S-P, Lau N-C, Vecchi GA (2013) Origin of seasonal predictability for summer climate over the Northwestern Pacific. Proc Nat Acad Sci USA 110:7574–7579

    Article  Google Scholar 

  • Kucharski F, Bracco A, Yoo J, & Molteni F (2008) Atlantic forced component of the Indian monsoon interannual variability. Geophys Res Lett 35.

  • Kwon, M, Jhun BJG, Wang SI, & Kug JS (2005) Decadal change in relationship between east Asian and WNP summer monsoons. Geophys Res Lett. doi:10.1029/2005GL023026

    Google Scholar 

  • Lau K, Weng H, & Einaudi F (2001) Recurrent Interannual Climate Modes and Teleconnection Linking North America Warm Season Precipitation Anomalies to Asia Summer Monsoon Variability.

  • Lau K, Kim M, Kim K (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn 26:855–864

    Article  Google Scholar 

  • Li X, Xie S-P, Gille ST, & Yoo C (2015) Atlantic-induced pan-tropical climate change over the past three decades. Nat Clim Change. doi:10.1038/nclimate2840

    Google Scholar 

  • Liu Y, & Ding YH (1992) Influence of El Nin˜o on weather and Climate in China. Acta Meteor Sin 6:117–131

    Google Scholar 

  • Luo H, Yanai M (1984) The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: heat and moisture budgets. Mon Weather Rev 112:966–989

    Article  Google Scholar 

  • McGregor S, Timmermann A, Stuecker MF, England MH, Merrifield M, Jin F-F, Chikamoto Y (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Change 4:888–892

    Article  Google Scholar 

  • Murakami T, Ding Y-H (1982) Wind and temperature changes over Eurasia during the early summer of 1979. J Meteor Soc Jpn 60:183–196

    Article  Google Scholar 

  • Nakicenovic N et al (2000) Special report on emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change (No. PNNL-SA-39650). Pacific Northwest National Laboratory, Richland, WA (US), Environmental Molecular Sciences Laboratory (US)

  • Ninomiya K, Akiyama T (1992) Multi-scale features of Baiu, the summer monsoon over Japan and East Asia. J Meteorol Soc Jpn 70(1B):467–495

    Article  Google Scholar 

  • Osman M, Vera C, Doblas-Reyes F, 2015: Predictability of the tropospheric circulation in the Southern Hemisphere from CHFP models. Clim Dyn, 1–12

  • Polo I, Martin-Rey M, Rodriguez-Fonseca B, Kucharski F, Mechoso CR (2015) Processes in the Pacific La Niña onset triggered by the Atlantic Niño. ClDy 44:115–131

    Google Scholar 

  • Rodríguez-Fonseca B, Polo I, García-Serrano J, Losada T, Mohino E, Mechoso CR, & Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett. doi:10.1029/2009GL040048.

    Google Scholar 

  • Seo K-H, Son J-H, & Lee J-Y (2011) A new look at Changma. Atmos Korean Meteor Soc 21:109–121

    Google Scholar 

  • Shen S, Lau K-M (1995) Biennial oscillation associated with the East Asian summer monsoon and tropical sea surface temperatures. J Meteorol Soc Jpn 73:105–124

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Son H-Y, Park J-Y, Kug J-S, Yoo J, Kim C-H (2014) Winter precipitation variability over Korean Peninsula associated with ENSO. Clim Dyn 42:3171–3186

    Article  Google Scholar 

  • Son H-Y, Park J-Y, & Kug J-S (2015) Precipitation variability in September over the Korean Peninsula during ENSO developing phase. ClDy. doi:10.1007/s00382-015-2776-x

    Google Scholar 

  • Su H, Neelin JD, Chou C (2001) Tropical teleconnection and local response to SST anomalies during the 1997–1998 El Nino. J Geophys Res 106:20025–20043

    Article  Google Scholar 

  • Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang B, Wu R, Lau K (2001) Interannual variability of the Asian summer monsoon: contrasts between the Indian and the Western North Pacific-East Asian Monsoons*. J Clim 14:4073–4090

    Article  Google Scholar 

  • Webster PJ, Magana VO, Palmer T, Shukla J, Tomas R, Yanai M, Yasunari T (1998) Monsoons: Processes, predictability, and the prospects for prediction. J Geophys Res 103:14451–14510

    Article  Google Scholar 

  • Wu B, Li T, Zhou T (2010) Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western north Pacific anomalous anticyclone during the El Niño Decaying Summer*. J Clim 23:2974–2986

    Article  Google Scholar 

  • Xie S-P, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J Clim 22:730–747

    Article  Google Scholar 

  • Yancheva G et al (2007) Influence of the intertropical convergence zone on the East Asian monsoon. Nature 445:74–77

    Article  Google Scholar 

  • Yeh T, Gao Y (1979) Qinghai-Xizang Plateau Meteorology. Science Press, Beijing

    Google Scholar 

  • Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461(7263):511–514

    Article  Google Scholar 

  • Yoon, H.-J., Kim H-J, & Yoon I-H (2006) On the study of the seasonality precipitation over South Korea. J Korean Earth Sci Soc 27:149–158

    Google Scholar 

  • Zhang Z, Chan JC, Ding Y (2004) Characteristics, evolution and mechanisms of the summer monsoon onset over Southeast Asia. Int J Climatol 24:1461–1482

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Korean Meteorological Administration Research and Development Program under Grant KMIPA2015-6170. The partial assimilation experiments were performed with the support of the Japanese Ministry of Education, Culture, Sports, Science and Technology, through the Program for Risk Information on Climate Change. Y.C. was supported through NSF Award No. 1049219.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoo-Geun Ham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ham, YG., Chikamoto, Y., Kug, JS. et al. Tropical Atlantic-Korea teleconnection pattern during boreal summer season. Clim Dyn 49, 2649–2664 (2017). https://doi.org/10.1007/s00382-016-3474-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3474-z

Keywords

Navigation