Skip to main content

Advertisement

Log in

Role of off-equatorial SST in El Niño teleconnection to East Asia during El Niño decaying spring

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Observational evidences are presented to show significant differences in Pacific–East Asian (PEA) teleconnections during the El Niño decaying period depending on the northern off-equatorial sea surface temperature (SST) conditions. On the basis of the northern off-equatorial central Pacific SST (NOCP) index, we separate El Niño events into two groups. Distinctive differences are observed between the two groups not only in tropical features but also in mid-latitude teleconnections. In particular, the NOCP index is closely related to the strength of the local feedback between the SST anomalies and the anticyclonic flow over the western North Pacific (WNP) during the ensuing spring of the El Niño events. Because the WNP anticyclone tends to persist until boreal spring in the case of negative NOCP, diabatic cooling due to the reduced precipitation over the WNP induces anticyclonic flow over the Kuroshio extension region via a Rossby wave response, which leads to warm and wet conditions over East Asia. However, because the WNP anticyclone decays early in the case of positive NOCP, cyclonic circulation exists over the North Pacific, which leads to cold and dry conditions over East Asia. Consequently, the maintenance of the WNP anticyclone during the El Niño decaying period may explain the discrepancy in the PEA teleconnections in various types of El Niño. Accordingly, the NOCP index could be a possible predictor for boreal spring climate conditions over East Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ashok K, Behera SK, Rao SA, Weng HY, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res Oceans 112:C11007. doi:10.1029/2006JC003798

    Article  Google Scholar 

  • Feng J, Li JP (2011) Influence of El Niño Modoki on spring rainfall over south China. J Geophys Res Atmos 116:D13102. doi:10.1029/2010JD015160

    Article  Google Scholar 

  • Feng J, Wang L, Chen W, Fong SK, Leong KC (2010) Different impacts of two types of Pacific Ocean warming on Southeast Asian rainfall during boreal winter. J Geophys Res 115:D24122. doi:10.1029/2010JD014761

    Article  Google Scholar 

  • Feng J, Chen W, Tam CY, Zhou W (2011) Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int J Climatol 31:2091–2101. doi:10.1002/joc.2217

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Quart J R Meteorol Soc 106:447–462. doi:10.1002/qj.49710644905

    Article  Google Scholar 

  • Halpert MS, Ropelewski CF (1992) Surface temperature patterns associated with the Southern oscillation. J Clim 5:577–593

    Article  Google Scholar 

  • Ham YG, Kug JS, Kang IS (2007) Role of moist energy advection in formulating anomalous Walker circulation associated with El Niño. J Geophys Res 112:D24105. doi:10.1029/2007JD008744

    Article  Google Scholar 

  • Held IM, Lyons SW, Nigam S (1989) Transients and the extratropical response to El Niño. J Atmos Sci 46(1):163–174

    Article  Google Scholar 

  • Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10:1769–1786

    Article  Google Scholar 

  • Horel JD, Wallace JM (1981) Planetary scale atmospheric phenomena associated with the southern oscillation. Mon Weather Rev 109:813–829

    Article  Google Scholar 

  • Hoskins B, Karoly D (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196

    Article  Google Scholar 

  • Jin F, Hoskins BJ (1995) The direct response to tropical heating in a baroclinic atmosphere. J Atmos Sci 52:307–319. doi:10.1175/1520-0469(1995)052

    Article  Google Scholar 

  • Jin CS, Ho CH, Kim JH, Lee DK, Cha DH, Yeh SW (2013) Critical role of northern off-equatorial sea surface temperature forcing associated with central pacific El Niño in more frequent tropical cyclone movements toward east Asia. J Clim 26:2534–2545

    Article  Google Scholar 

  • Kalnay E, coauthors (1996) The NCEP/NCAR 40-year reanalysis project. B Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632. doi:10.1175/2008jcli2309.1

    Article  Google Scholar 

  • Karori MA, Li JP, Jin FF (2013) The asymmetric Influence of the two types of El Niño and La Niña on summer rainfall over Southeast China. J Clim 26:4567–4582. doi:10.1175/Jcli-D-12-00324.1

    Article  Google Scholar 

  • Kim DW, Choi KS, Byun HR (2012a) Effects of El Niño Modoki on winter precipitation in Korea. Clim Dyn 38:1313–1324. doi:10.1007/s00382-011-1114-1

  • Kim JS, Kim KY, Yeh SW (2012b) Statistical evidence for the natural variation of the central Pacific El Niño. J Geophys Res Oceans 117:C06014. doi:10.1029/2012JC008003

  • Kim JS, Kug JS, Yeh SW, Kim HK, Park EH (2014) Relation between climate variability in Korea and two types of El Niño, and their sensitivity to definition of two types of El Niño. Atmosphere 24(1). doi:10.14191/Atmos.2014.24.1.089

  • Kim S, Kim HS, Min SK, Son HY, Won DJ, Jung HS, Kug JS (2015) Intra-winter atmospheric circulation changes over East Asia and North Pacific associated with ENSO in a seasonal prediction model. Asia Pac J Atmos Sci 51:49–60. doi:10.1007/s13143-014-0059-9

    Article  Google Scholar 

  • Kim S, Son HY, Kug JS (2016) How well do climate models simulate atmospheric teleconnections over the North Pacific and East Asia associated with ENSO? Clim Dyn. doi:10.1007/s00382-016-3121-8

    Google Scholar 

  • Kug JS, Ham YG (2011) Are there two types of La Niña? Geophys Res Lett 38:L16704. doi:10.1029/2011GL048237

    Article  Google Scholar 

  • Kug JS, Kang IS (2006) Interative feedback between ENSO and the Indian Ocean. J Clim 19:1784–1801

    Article  Google Scholar 

  • Kug JS, Kirtman BP, Kang IS (2006a) Interactive feedback between ENSO and the Indian Ocean in an interactive ensemble coupled model. J Clim 19:6371–6381

  • Kug JS, Li T, An SI, Kang IS, Luo JJ, Masson S, Yamagata T (2006b) Role of the ENSO-Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys Res Lett 33:L09710. doi:10.1029/2005GL024916

  • Kug JS, Jin FF, An SL (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515. doi:10.1175/2008JCLI2624.1

    Article  Google Scholar 

  • Kug JS, Ahn MS, Sung MK, Yeh SW, Min HS, Kim YH (2010) Statistical relationship between two types of El Niño events and climate variation over the Korean Peninsula. Asia Pac J Atmos Sci 46:467–474. doi:10.1007/s13143-010-0027-y

    Article  Google Scholar 

  • Kug JS, Ham YG, Lee JY, Jin FF (2012) Improved simulation of two types of El Niño in CMIP5 models. Environ Res Lett 7. doi:10.1088/1748-9326/7/3/034002

  • Larkin NK, Harrison DE (2005) On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys Res Lett 32:L13705. doi:10.1029/2005GL022738

    Article  Google Scholar 

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in Earth science. Science 314:1740–1745. doi:10.1126/science.1132588

    Article  Google Scholar 

  • Min SK, Son SW, Seo KH, Kug JS, An SI, Choi YS, Jeong JH, Kim BM, Kim JW, Kim JH, Lee JY, Lee MI (2015) Changes in weather and climate extremes over Korea and possible causes: A review. Asia Pac J Atmos Sci 51(2):103–121

    Article  Google Scholar 

  • Ren HL, Jin FF (2011) Niño indices for two types of ENSO. Geophys Res Lett 38:L04704. doi:10.1029/2010gl046031

    Article  Google Scholar 

  • Renwick JA, Revell MJ (1999) Blocking over the South Pacific and Rossby wave propagation. Mon Wea Rev 127:2233–2247

    Article  Google Scholar 

  • Smith TM, Reynolds RW (2004) Improved extended reconstruction of SST (1854–1997). J Clim 17:2466–2477

    Article  Google Scholar 

  • Son HY, Park JY, Kug JS, Yoo J, Kim CH (2014) Winter precipitation variability over Korean Peninsula associated with ENSO. Clim Dyn 42:3171–3186. doi:10.1007/s00382-013-2008-1

    Article  Google Scholar 

  • Son HY, Park JY, Kug JS (2015) Precipitation variability in September over the Korean Peninsula during ENSO developing phase. Clim Dyn. doi:10.1007/s00382-015-2776-x

    Google Scholar 

  • Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett 38:L10704. doi:10.1029/2011gl047364

    Article  Google Scholar 

  • Ting M, Sardeshmukh PD (1993) Factors determining the extratropical response to equatorial diabetic heating anomalies. J Atmos Sci 50:907–918

    Article  Google Scholar 

  • Trenberth KE, Smith L (2009) Variations in the three-dimensional structure of the atmospheric circulation with different flavors of El Niño. J Clim 22(11):2978–2991. doi:10.1175/2008JCLI2691.1

    Article  Google Scholar 

  • Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Clim 14:1697–1701

    Article  Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis MC, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007. The physical science basis. Intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 235–336

    Google Scholar 

  • Ueda H, Kamae Y, Hayasaki M, Kitoh A, Watanabe S, Miki Y, Kumai A (2015) Combined effects of recent Pacific cooling and Indian Ocean warming on the Asian monsoon. Nat Commun 6:8854. doi:10.1038/ncomms9854

    Article  Google Scholar 

  • Wang B, Zhang Q (2002) Pacific-east Asian teleconnection. Part II: how the Philippine Sea anomalous anticyclone is established during El Niño development. J Clim 15:3252–3265

    Article  Google Scholar 

  • Wang B, Wu RG, Fu XH (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang B, Wu R, Lau KM (2001) Interannual variability of Asian summer monsoon: contrast between the Indian and western North Pacific-East Asian monsoons. J Clim 14:4073–4090. doi:10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2

    Article  Google Scholar 

  • Wang X, Wang DX, Zhou W, Li CY (2012) Interdecadal modulation of the influence of La Niña events on mei-yu rainfall over the Yangtze River Valley. Adv Atmos Sci 29:157–168

    Article  Google Scholar 

  • Wang B, Xiang BQ, Lee JY (2013) Subtropical High predictability establishes a promising way for monsoon and tropical storm predictions. P Natl Acad Sci USA 110:2718–2722. doi:10.1073/pnas.1214626110

    Article  Google Scholar 

  • Watanabe M, Jin FF (2002) Role of Indian ocean warming in the development of Philippine sea anticyclone during ENSO. Geophys Res Lett 29(10):1478. doi:10.1029/2001GL014318

    Article  Google Scholar 

  • Watanabe M, Jin FF (2003) A moist linear baroclinic model: coupled dynamical-convective response to El Niño. J Clim 16:1121–1139

    Article  Google Scholar 

  • Watanabe M, Kimoto M (2000) On the persistence of decadal SST anomalies in the North Atlantic. J Clim 13:3017–3028

    Article  Google Scholar 

  • Weng HY, Ashok K, Behera SK, Rao SA, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific Rim during boreal summer. Clim Dyn 29:113–129. doi:10.1007/s00382-007-0234-0

    Article  Google Scholar 

  • Weng HY, Behera SK, Yamagata T (2009) Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Clim Dyn 32:663–674. doi:10.1007/s00382-008-0394-6

    Article  Google Scholar 

  • Wu RG, Hu ZZ, Kirtman BP (2003) Evolution of ENSO-related rainfall anomalies in East Asia. J Clim 16:3742–3758

    Article  Google Scholar 

  • Wu B, Zhou TJ, Li T (2009) Seasonally evolving dominant interannual variability modes of East Asian climate. J Clim 22:2992–3005

    Article  Google Scholar 

  • Wu B, Li T, Zhou T (2010a) Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Niño and La Niña. J Clim 23:4807–4822

  • Wu B, Li T, Zhou T (2010b) Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during El Niño decaying summer. J Clim 23:2974–2986

  • Xie PP, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. B Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

  • Xie SP, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J Clim 22:730–747

    Article  Google Scholar 

  • Xie SP, Kosaka Y, Du Y, Hu K, Chowdary JS, Huang G (2016) Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: a review. Adv Atmos Sci 33:411–432. doi:10.1007/s00376-015-5192-6

    Article  Google Scholar 

  • Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461:511–514

    Article  Google Scholar 

  • Yeh SW, Kug JS, An SI (2014) Recent progress on two types of El Niño: observations, dynamics, and future changes. Asia Pac J Atmos Sci 50:69–81. doi:10.1007/s13143-014-0028-3

    Article  Google Scholar 

  • Yuan Y, Yang S (2012) Impacts of different types of El Niño on the East Asian climate: focus on ENSO cycles. J Clim 25:7702–7722

    Article  Google Scholar 

  • Yuan Y, Yang S, Zhang ZQ (2012) Different evolutions of the Philippine Sea anticyclone between the Eastern and Central Pacific El Niño: possible effects of Indian Ocean SST. J Clim 25:7867–7883

    Article  Google Scholar 

  • Zhou LT, Wu RG (2010) Respective impacts of the East Asian winter monsoon and ENSO on winter rainfall in China. J Geophys Res 115:D02107. doi:10.1029/2009JD012502

    Google Scholar 

  • Zhou TJ, Wu B, Dong L (2014) Advances in research of ENSO changes and the associated impacts on Asian-Pacific climate. Asia Pac J Atmos Sci 50:405–422

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Korea Meteorological Administration Research and Development Program under grant KMIPA 2015-1041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Seong Kug.

Additional information

This paper is a contribution to the special collection on ENSO Diversity. The special collection aims at improving understanding of the origin, evolution, and impacts of ENSO events that differ in amplitude and spatial patterns, in both observational and modeling contexts, and in the current as well as future climate scenarios. This special collection is coordinated by Antonietta Capotondi, Eric Guilyardi, Ben Kirtman and Sang-Wook Yeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JS., Kug, JS. Role of off-equatorial SST in El Niño teleconnection to East Asia during El Niño decaying spring. Clim Dyn 52, 7293–7308 (2019). https://doi.org/10.1007/s00382-016-3473-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3473-0

Keywords

Navigation