Projected changes in surface solar radiation in CMIP5 global climate models and in EURO-CORDEX regional climate models for Europe

Abstract

The objective of the present work is to compare the projections of surface solar radiation (SSR) simulated by four regional climate models (CCLM, RCA4, WRF, ALADIN) with the respective fields of their ten driving CMIP5 global climate models. First the annual and seasonal SSR changes are examined in the regional and in the global climate models based on the RCP8.5 emission scenarios. The results show significant discrepancies between the projected SSR, the multi-model mean of RCMs indicates a decrease in SSR of −0.60 W/m2 per decade over Europe, while the multi-model mean of the associated GCMs used to drive the RCMs gives an increase in SSR of +0.39 W/m2 per decade for the period of 2006–2100 over Europe. At seasonal scale the largest differences appear in spring and summer. The different signs of SSR projected changes can be interpreted as the consequence of the different behavior of cloud cover in global and regional climate models. Cloudiness shows a significant decline in GCMs with −0.24% per decade which explains the extra income in SSR, while in case of the regional models no significant changes in cloudiness can be detected. The reduction of SSR in RCMs can be attributed to increasing atmospheric absorption in line with the increase of water vapor content. Both global and regional models overestimate SSR in absolute terms as compared to surface observations, in line with an underestimation of cloud cover. Regional models further have difficulties to adequately reproduce the observed trends in SSR over the past decades.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Alexandru A, de Elia R, Laprise R (2007) Internal variability in regional climate downscaling at the seasonal scale. Mon Weather Rev 135(9):3221–3238

    Article  Google Scholar 

  2. Allen RJ, Norris JR, Wild M (2013) Evaluation of multidecadal variability in CMIP5 surface solar radiation and inferred underestimation of aerosol direct effects over Europe, China, Japan, and India. J Geophys Res 118:6311–6336

    Article  Google Scholar 

  3. ARPEGE-Climate Version 5.2 (2011). http://www.cnrm-game-meteo.fr/gmgec/arpege-climat/ARPCLI-V5.2/doca/arp52ca.pdf. Accessed 30 Sept 2016

  4. Baldauf M, Schulz JP (2004) Prognostic precipitation in the Lokal-Modell (LM) of DWD. COSMO. Newslett 4:177–180

    Google Scholar 

  5. Bellprat O, Kotlarski S, Lüthi D, Schär C (2012) Exploring perturbed physics ensembles in a regional climate model. J Climate 25:4582–4599

    Article  Google Scholar 

  6. Bougeault P (1985) A simple parameterisation of the large-scale effects of cumulus convection. Mon Wea Rev 113:2108–2121

    Article  Google Scholar 

  7. Caya D, Biner S (2004) Internal variability of RCM simulations over an annual cycle. Clim Dyn 22:33–46

    Article  Google Scholar 

  8. Cherian R, Quaas J, Salzmann M, Wild M (2014) Pollution trends over Europe constrain global aerosol forcing as simulated by climate models. Geophys Res Lett 41:2176–2181. doi:10.1002/2013GL058715

    Article  Google Scholar 

  9. Chiacchio M, Solmon F, Giorgi F, Stackhouse P, Wild M (2015) Evaluation of the radiation budget with a regional climate model over Europe and inspection of dimming and brightening. J Geophys Res 120:1951–1971. doi:10.1002/2014JD022497

    Google Scholar 

  10. Collins WJ et al (2011) Development and evaluation of an Earth-System model- HadGEM2. Geosci Model Dev 4:1051–1075

    Article  Google Scholar 

  11. Crook JA, Jones LA, Forster PM, Crook (2011) Climate change impacts on future photovoltaic and concentrated solar power energy output. Energy. Environ Sci 4(9):3101–3109

    Google Scholar 

  12. Cuxart J, Bougeault P, Redelsperger JL (2000) A turbulence scheme allowing for mesoscale and large-eddy simulations. Q J R Meteorol Soc 126:1–30

    Article  Google Scholar 

  13. Di Luca A, de Elía R, Laprise R (2015) Challenges in the quest for added value of regional climate dynamical downscaling. Curr Clim Change Rep 1:10–21. doi:10.1007/s40641-015-0003-9

    Article  Google Scholar 

  14. Doms G, Förstner J, Heise E, Herzog HJ, Raschendorfer M, Schrodin R, Reinhardt T, Vogel G (2011) A description of the nonhydrostatic regional model LM. Part II: physical parameterization, Deutscher Wetterdienst. http://www.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf. Accessed 25 June 2016

  15. Dufresne JL et al (2012) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn doi:10.1007/s00382-012-1636-1

    Google Scholar 

  16. Dunne JP et al (2012) GFDL’s ESM2 global coupled climate-carbon Earth System models. Part I: physical formulation and baseline simulation characteristics. J Clim 25:6646–6665

    Article  Google Scholar 

  17. Dwyer JG, Norris JR, Ruckstuhl C (2010) Do climate models reproduce observed solar dimming and brightening over China and Japan? J Geophys Res 115:D00K08. doi:10.1029/2009JD012945

    Article  Google Scholar 

  18. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 003296:2003. doi:10.1029/2002JD

    Google Scholar 

  19. Feser F, Rockel B, von Storch H, Winterfeldt J, Zahn M (2011) Regional climate models add value to global model data. Bull Am Meteor Soc 92:1181–1192

    Article  Google Scholar 

  20. Finger D, Heinrich G, Gobiet A, Bauder A (2012) Projections of future water resources and their uncertainty in a glacierized catchment in the Swiss Alps and the subsequent effects on hydropower production during the 21st century. Water Resour Res 48:W02521. doi:10.1029/2011WR010733

    Google Scholar 

  21. Folini D, Wild M (2011) Aerosol emissions and dimming/brightening in Europe: sensitivity studies with ECHAM5-HAM. J Geophys Res 116:D21104. doi:10.1029/2011JD016227

    Article  Google Scholar 

  22. Fouquart Y, Bonnel B. (1980). Computations of solar heating of the earth’s atmosphere: A new parametrization. Beitr Phys Atmo 53:35–62

  23. Gaetani M et al (2014) The near future availability of photovoltaic energy in Europe and Africa in climate-aerosol modelling experiments. Renew Sust Energy Rev 38:706–716

    Article  Google Scholar 

  24. García Díez M, Fernández J, Vautard R (2015) An RCM multiphysics ensemble over. Europe: multivariable evaluation to avoid error compensation. Clim Dyn 45(11):3141–3156. doi:10.1007/s00382-015-2529-x

    Article  Google Scholar 

  25. Gilgen H, Wild M, Ohmura A (1998) Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data. J Clim 11(8):2042–2061

    Article  Google Scholar 

  26. Giorgi F, Bi X (2000) A study of internal variability of a regional climate model. J Geophys Res 105:29503–29521

    Article  Google Scholar 

  27. Giorgi F, Gutowski Jr WJ (2015) Regional Dynamical Downscaling and the CORDEX Initiative. Annu Rev Environ Resour 40:467–490

    Article  Google Scholar 

  28. Giorgi F, Marinucci MR, Visconti G (1990) Use of a limited area model nested in a general circulation model for regional climate simulation over Europe. J Geophys Res 95(18):413–418

    Google Scholar 

  29. Gobiet A, Jacob D, EURO-CORDEX Community (2012) A new generation of regional climate simulations for Europe: the EURO-CORDEX initiative. Geophy Res Abstracts 14:EGU2012-8211

    Google Scholar 

  30. Grell GA, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 015311:2002. doi:10.1029/2002GL

    Google Scholar 

  31. Hahn CJ, Warren SG (2003) Cloud climatology for land stations worldwide, 1971–1996, NDP-026D. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, doi:10.3334/CDIAC/cli.ndp026d. http://cdiac.ornl.gov/epubs/ndp/ndp026d/ndp026d.html

  32. Haywood JM, Bellouin N, Jones A, Boucher O, Wild M, Shine KP (2011) The roles of aerosol, water vapor and cloud in future global dimming/brightening. J Geophys Res 116:D20203. doi:10.1029/2011JD016000

    Article  Google Scholar 

  33. Hazeleger W et al (2012) EC-Earth V2.2: description and validation of a new seamless earth system prediction model. Clim Dyn 39:2611–2629

    Article  Google Scholar 

  34. Hohenegger C, Vidale PL (2005) Sensitivity of the European climate to aerosol forcing as simulated with a regional climate model. J Geophys Res 110:D06201. doi:10.1029/2004JD005335

    Article  Google Scholar 

  35. Hong SY, Dudhia J, Chen SH (2004) A revised approach to microphysical processes for the bulk parameterization of cloud and precipitation. Mon Weather Rev 132:103–120

    Article  Google Scholar 

  36. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341. http://www.dwd.de/bvbw/generator/DWDWWW/Content/Forschung/FE1/Veroeffentlichungen/Download/LMdocu__II__physics__0509,templateId=raw,property=publicationFile.pdf/LMdocu_II_physics_0509.pdf Accessed on 20 August 2015

  37. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res 113:D13103. doi:10.1029/2008JD009944

    Article  Google Scholar 

  38. IPCC Climate Change (2013) The physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 1535. doi:10.1017/CBO9781107415324

    Google Scholar 

  39. Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM et al (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14(2):563–578

    Article  Google Scholar 

  40. Jaeger E, Anders I, Luthi D, Rockel B, Schar C, Seneviratne SI (2008) Analysis of ERA40-driven CLM simulations for Europe. Meteorol Z 17(4):349–367

    Article  Google Scholar 

  41. Jerez S, Montavez JP, Gomez-Navarro JJ, Jimenez PA, Jimenez-Guerrero P, Lorente R, Gonzalez-Rouco JF (2012) The role of the land-surface model for climate change projections over the Iberian Peninsula. J Geophys Res 117:D01109

    Article  Google Scholar 

  42. Jerez S, Montavez JP, Jimenez-Guerrero P, Gomez-Navarro JJ, Lorente-Plazas R, Zorita E (2013) A multi-physics ensemble of present-day climate regional simulations over the Iberian Peninsula. Clim Dyn 40(11–12):3023–3046

    Article  Google Scholar 

  43. Jerez S, Thais F, Tobin I, Wild M, Colette A, Yiou P, Vautard R (2015) The CLIMIX model: a tool to create and evaluate spatially-resolved scenarios of photovoltaic and wind power development. Renew Sustain Energy Rev 42:1–15. doi:10.1016/j.rser.2014.09.041

    Article  Google Scholar 

  44. Kain JS, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47:2784–2802

    Article  Google Scholar 

  45. Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: the Kain-Fritsch scheme. The representation of cumulus convection in numerical models. Meteorol Monogr 24:165–170

    Google Scholar 

  46. Katragkou E, García-Díez M, Vautard R, Sobolowski S, Zanis P, Alexandri G, Cardoso RM, Colette A, Fernandez J, Gobiet A, Goergen K, Karacostas T, Knist S, Mayer S, Soares PMM, Pytharoulis I, Tegoulias I, Tsikerdekis A, Jacob D (2015) Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble. Geosci Model Dev 8:603–618. doi:10.5194/gmd-8-603-2015

    Article  Google Scholar 

  47. Kinne S, O’Donnel D, Stier P, Kloster S, Zhang K, Schmidt H, Rast S, Giorgetta M, Eck FT, Stevens B (2013) HAC-v1: a new global aerosol climatology for climate studies. J Adv Model Earth Syst 5:1–37. doi:10.1002/jame.20035

    Article  Google Scholar 

  48. Klein SA, Zhang Y, Zelinka MD, Pincus R, Boyle J, Gleckler PJ (2013) Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. J Geophys Res Atmos 118:1329–1342. doi:10.1002/jgrd.50141

    Article  Google Scholar 

  49. Kothe S, Dobler A, Beck A, Ahrens B (2011) The radiation budget in a regional climate model. Clim Dyn 36:1023–1036. doi:10.1007/s00382-009-0733-2

    Article  Google Scholar 

  50. Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schär C, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V (2014) Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7:1297–1333. doi:10.5194/gmd-7-1297-2014

    Article  Google Scholar 

  51. Kupiainen M, Samuelsson P, Jones C, Jansson C, Willén U, Hansson U, Ullerstig A, Wang S, Döscher R (2011), Rossby Centre regional atmospheric model, RCA4. Rossby Centre Newsletter, June 2011. SMHI, SE-60176 Norrköping, Sweden, http://www.smhi.se/en/research/research-departments/climate-research-rossby-centre2-552/rossby-centre-regional-atmospheric-model-rca4-1.16562. Acceesed 25 June 2016

  52. Lamarque JF, Bond T, Eyring V, Granier C, Heil A, Klimont Z, van Vuuren D (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10:7017–7039

    Article  Google Scholar 

  53. Lara-Fanego V, Ruiz-Arias JA, Pozo-Vázquez D, Santos-Alamillos FJ, Tovar- Pescador J (2012) Evaluation of the WRF model solar irradiance forecasts in Andalusia (southern Spain). Sol Energy 86(8):2200–2218

    Article  Google Scholar 

  54. Li JLF, Waliser DE, Stephens G, Lee S, L’Ecuyer T, Kato S, Loeb N, Ma HY (2013) Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. J Geophys Res Atmos 118(15):8166–8184. doi:10.1002/jgrd.50378

    Article  Google Scholar 

  55. Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Bound Layer Meteorol 17:187–202

    Article  Google Scholar 

  56. Lucas-Picher P, Caya D, de Elía R, Laprise R (2008) Investigation of regional climate models’ internal variability with a tenmember ensemble of 10-year simulations over a large domain. Clim Dyn. 31:927–940

    Article  Google Scholar 

  57. Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48:RG3003. doi:10.1029/2009RG000314

    Article  Google Scholar 

  58. Müller C, Robertson RD (2014) Projecting future crop productivity for global economic modeling. Agric Econ 45:37–50. doi:10.1111/agec.12088

    Article  Google Scholar 

  59. Nabat P, Somot S, Mallet M, Sanchez-Lorenzo A, Wild M (2014) Contribution of anthropogenic sulfate aerosols to the changing Euro-Mediterranean climate since 1980. Geophys Res Lett 41(15):5605–5611. doi:10.1002/2014GL060798

    Article  Google Scholar 

  60. Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117:536­–549

  61. Ohmura A, Gilgen H, Wild M (1989) Global Energy Balance Archive, GEBA-World Climate Programme-Water Project A7, Report 1: introduction. Zürcher Geographische Schriften, No.34. Fachvereine Verlag, Zurich, p 62

    Google Scholar 

  62. Ohmura A, Dutton EG, Forgan B, Frohlich C, Gilgen H, Hegner H, Heimo A, Konig-Langlo G, McArthur B, Muller G, Philipona R, Pinker R, Whitlock CH, Dehne K, Wild M (1998) Baseline surface radiation network (bsrn/wcrp): new precision radiometry for climate research. Bull Am Meteorol Soc 79(10):2115–2136

    Article  Google Scholar 

  63. Paeth H, Mannig B (2013) On the added value of regional climate modeling in climate change assessment. Clim Dyn 41:1057–1066. doi:10.1007/s00382-012-1517-7

    Article  Google Scholar 

  64. Panagea IS, Tsanis IK, Koutroulis AG, Grillakis MG (2014) Climate change impact on photovoltaic energy output: the case of Greece. Adv Meteorol 2014:264506

    Article  Google Scholar 

  65. Pasicko R, Brankovic C, Simic Z (2012) Assessment of climate change impacts on energy generation from renewable sources in Croatia. Renew Energy 46:224–231

    Article  Google Scholar 

  66. Pessacg NL, Solman SA, Samuelsson P, Sanchez E, Marengo J, Li L, Remedio ARC, da Rocha RP, Mourao C, Jacob D (2014) The surface radiation budget over South America in a set of regional climate models from the CLARIS-LPB project. Clim Dyn 43:1221–1239. doi:10.1007/s00382-013-1916-4

    Article  Google Scholar 

  67. Rasch PJ, Kristjánsson JE (1998) A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J Climate 11:1587–1614

    Article  Google Scholar 

  68. Remund J, Muller SC (2010) Trends in global radiation between 1950 and 2100. 10th EMS Annual Meeting, 10th European Conference on Applications of Meteorology (ECAM). European Meteorological Society (EMS), Zurich

    Google Scholar 

  69. Ricard JL, Royer JF (1993) A statistical cloud scheme for use in an AGCM. Ann Geophys 11:1095–1115

    Google Scholar 

  70. Ritter B, Geleyn JF (1992) A comprehensive radiation scheme of numerical weather prediction with potential application to climate simulations. Mon Weather Rev 120:303–325

    Article  Google Scholar 

  71. Rotstayn LD, Jeffrey SJ, Collier MA, Dravitzki SM, Hirst AC, Syktus JI, Wong KK (2012) Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. Atmos Chem Phys 12:6377–6404

    Article  Google Scholar 

  72. Ruckstuhl C, Norris JR (2009) How do aerosol histories affect solar ‘‘dimming’’ and ‘‘brightening’’ over Europe? IPCC-AR4 models versus observations. J Geophys Res 114:D00D04. doi:10.1029/2008JD011066

    Article  Google Scholar 

  73. Rummukainen M (2010) State-of-the-art with regional climate models. Wiley Interdiscip Rev Clim Change 1(1):82–96

    Article  Google Scholar 

  74. Samuelsson P, Gollvik S, Ullerstig A (2006) The land-surface scheme of the Rossby Centre regional atmospheric climate model (RCA3). SMHI Rep Met 122

  75. Samuelsson P, Jones C, Willén U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjellström E, Nikulin G and Wyser K (2011) The Rossby Centre Regional Climate Model RCA3: model description and performance. Tellus 63 A. doi:10.1111/j.1600-0870.2010.00478.x

    Google Scholar 

  76. Sass BH, Rontu L, Savijaärvi H, Räisänen P (1994) HIRLAM-2 radiation scheme: documentation and tests. SMHI HIRLAM Technical Report No. 16

  77. Savijärvi H (1990) A fast radiation scheme for mesoscale model and short-range forecast models. J Appl Meteorol 29:437–447

    Article  Google Scholar 

  78. Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW, Clark DB, Dankers R, Eisner S, Fekete BM, Colón-González FJ, Gosling SN, Kim H, Liu X, Masaki Y, Portmann FT, Satoh Y, Stacke T, Tang Q, Wada Y, Wisser D, Albrecht T, Frieler K, Piontek F, Warszawski L, Kabat P (2014) Multi-model assessment of water scarcity under climate change. PNAS 111(9):3245–3250. doi:10.1073/pnas.1222460110

    Article  Google Scholar 

  79. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Teuling AJ (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev 99(3):125–161

    Article  Google Scholar 

  80. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF Version 3, NCAR/TN-475+STR, NCAR Technical Note, June 2008

  81. Stanhill G, Cohen S (2001) Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric For Meteorol 107(4):255–278

    Article  Google Scholar 

  82. Szentimrey T (2003) Multiple analysis of series for homogenization (MASH); Verification procedure for homogenized time series. In: Fourth seminar for homogenization and quality control in climatological databases, WMO, Budapest, 56:193–201

    Google Scholar 

  83. Tanré D, Geleyn J, Slingo J (1984) First results of the introduction of an advanced aerosol-radiation interaction in ECMWF low resolution global model. In: Gerber H, Deepak A (eds) Aerosols and their climatic effects, A. Deepak, Hampton, pp. 133–177

    Google Scholar 

  84. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of Cmip5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  85. Tegen I, Hollrig P, Chin M, Fung I, Jacob D, Penner J (1997) Contribution of different aerosol species to the global aerosol extinction optical thickness: estimates from model results. J Geophys Res 102(23 895–23):915

    Google Scholar 

  86. Tian T, Boberg F, Christensen OB, Christensen JH, She J, Vihma T (2013) Resolved complex coastlines and land-sea contrasts in a high-resolution regional climate model: a comparative study using prescribed and modelled SSTs. Tellus A 65: 19951. doi:10.3402/tellusa.v65i0.19951

    Article  Google Scholar 

  87. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1799

    Article  Google Scholar 

  88. Tjiputra JF et al (2013) Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geophys Model Dev 6:301–325

    Article  Google Scholar 

  89. Torma CS, Giorgi F, Coppola E (2015) Added value of regional climate modeling over areas characterized by complex terrain—Precipitation over the Alps. J Geophys Res Atmos 120:3957–3972. doi:10.1002/2014JD022781

    Article  Google Scholar 

  90. Troen I, Mahrt L (1986). A simple model of the atmosphere boundary layer; sensitivity to surface evaporation. Bound Layer Meteorol 37:129–148.

    Article  Google Scholar 

  91. Turco M, Sanna A, Herrera S, Llasat MC, Gutiérrez JM (2013) Large biases and inconsistent climate change signals in ENSEMBLES regional projections. Clim Change 120:859–869

    Article  Google Scholar 

  92. Turnock ST, Spracklen DV, Carslaw KS, Mann GW, Woodhouse MT, Forster PM, Haywood J, Johnson CE, Dalvi M, Bellouin N, Sanchez-Lorenzo A (2015) Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009. Atmos Chem Phys Discuss 15:13457–13513

    Article  Google Scholar 

  93. Vannitsem S, Chomé F (2005) One-way nested regional climate simulations and domain size. J Clim 18:229–233

    Article  Google Scholar 

  94. Vautard R, Gobiet A, Jacob D, Belda M, Colette A, Déqué M et al (2013) The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim Dyn 41:2555–2575. doi:10.1007/s00382-013-1714-z

    Article  Google Scholar 

  95. Vezzoli R, Mercogliano P, Pecora S, Zollo AL, Cacciamani C (2015) Hydrological simulation of Po River (North Italy) discharge under climate change scenarios using the RCM COSMO-CLM. Sci Total Environ 521–522:346–358

    Article  Google Scholar 

  96. Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine M-P, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40(9–10):2091–2121

    Article  Google Scholar 

  97. von Salzen K et al (2013) The Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4). Part I: representation of physical processes. Atmos Ocean 51:104–125

    Article  Google Scholar 

  98. Watanabe M et al (2010) Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J Clim 23:6312–6335

    Article  Google Scholar 

  99. Wilcox LJ, Highwood EJ, Dunstone NJ (2013) The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ Res Lett. doi:10.1088/1748-9326/8/2/024033

    Google Scholar 

  100. Wild M (2009) Global dimming and brightening: A review. J Geophys Res 114:D00D16. doi:10.1029/2008JDO11470

    Google Scholar 

  101. Wild M, Schmucki E (2011) Assessment of global dimming and brightening in IPCC-AR4/CMIP3 models and ERA40. Clim Dyn 37(7):1671–1688. doi:10.1007/s00382-010-0939-3

    Article  Google Scholar 

  102. Wild M, Ohmura A, Gilgen H, Roeckner E (1995) Regional climate simulation with a high resolution GCM: surface radiative fluxes. Clim Dyn 11:469–486

    Article  Google Scholar 

  103. Wild M, Dümenil L, Schulz JP (1996) Regional climate simulation with a high resolution GCM: surface hydrology. Clim Dyn 12:755–774

    Article  Google Scholar 

  104. Wild M, Ohmura A, Cubasch U (1997) GCM simulated surface energy fluxes in climate change experiments. J Clim 10:3093–3110

    Article  Google Scholar 

  105. Wild M et al (2005) From dimming to brightening: decadal changes in surface solar radiation. Science 308:847–850. doi:10.1126/science.1103215

    Article  Google Scholar 

  106. Wild M, Folini D, Schär C, Loeb N, Dutton EG, König-Langlo G (2013) The global energy balance from a surface perspective. Clim Dyn 40:3107–3134. doi:10.1007/s00382-012-1569-8

    Article  Google Scholar 

  107. Wild M, Folini D, Henschel F, Fischer N, Müller B (2015a) Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems. Sol Energy 116:12–24

  108. Wild M, Folini D, Hakuba MZ, Schär C, Seneviratne SI, Kato S, Rutan D, Ammann C, Wood EF, König-Langlo G (2015b) The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Clim Dyn 44(11–12):3393–3429. doi:10.1007/s00382-014-2430-z

  109. Xie SP, Deser C, Vecchi GA, Collins M, Delworth TL, Hall A, Hawkins E, Johnson NC, Cassou C, Giannini A, Watanabe M (2015) Towards predictive understanding of regional climate change. Nat Clim Change 5:921–930

    Article  Google Scholar 

  110. Zhang MH et al (2005) Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J Geophys Res 110:D15S02. doi:10.1029/2004JD005021

    Google Scholar 

  111. Zubler EM, Folini D, Lohmann U, Lüthi D, Schär C, Wild M (2011a) Simulation of dimming and brightening in Europe from 1958 to 2001 using a regional climate model. J Geophys Res 116:D18205. doi:10.1029/2010JD015396

  112. Zubler EM, Folini D, Lohmann U, Lüthi D, Muhlbauer A, Pousse-Nottelmann S, Schär C, Wild M (2011b) Implementation and evaluation of aerosol and cloud microphysics in a regional climate model. J Geophys Res 116:D02211. doi:10.1029/2010JD014572

  113. Zubler EM, Lohmann U, Lüthi D, Schär C (2011c) Intercomparison of aerosol climatologies for use in a regional climate model over Europe. Geophys Res Lett 38:L15705. doi:10.1029/2011GL048081

Download references

Acknowledgements

The first author thanks for the Scientific Exchange Programme NMS-CH, for supporting by SCIEX postdoctoral fellowship (No. 13.155-2) and for the Young Research Grant supported by Babes-Bolyai University (No. GTC-31779/2016).The study also received support from the CEA-DSM CLLIMIX project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Blanka Bartók.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8216 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bartók, B., Wild, M., Folini, D. et al. Projected changes in surface solar radiation in CMIP5 global climate models and in EURO-CORDEX regional climate models for Europe. Clim Dyn 49, 2665–2683 (2017). https://doi.org/10.1007/s00382-016-3471-2

Download citation

Keywords

  • Surface solar radiation
  • CMIP5 global climate model
  • EURO-CORDEX regional climate model
  • Cloudiness
  • Atmospheric absorption