Climate Dynamics

, Volume 49, Issue 7–8, pp 2665–2683 | Cite as

Projected changes in surface solar radiation in CMIP5 global climate models and in EURO-CORDEX regional climate models for Europe

  • Blanka Bartók
  • Martin Wild
  • Doris Folini
  • Daniel Lüthi
  • Sven Kotlarski
  • Christoph Schär
  • Robert Vautard
  • Sonia Jerez
  • Zoltán Imecs
Article

Abstract

The objective of the present work is to compare the projections of surface solar radiation (SSR) simulated by four regional climate models (CCLM, RCA4, WRF, ALADIN) with the respective fields of their ten driving CMIP5 global climate models. First the annual and seasonal SSR changes are examined in the regional and in the global climate models based on the RCP8.5 emission scenarios. The results show significant discrepancies between the projected SSR, the multi-model mean of RCMs indicates a decrease in SSR of −0.60 W/m2 per decade over Europe, while the multi-model mean of the associated GCMs used to drive the RCMs gives an increase in SSR of +0.39 W/m2 per decade for the period of 2006–2100 over Europe. At seasonal scale the largest differences appear in spring and summer. The different signs of SSR projected changes can be interpreted as the consequence of the different behavior of cloud cover in global and regional climate models. Cloudiness shows a significant decline in GCMs with −0.24% per decade which explains the extra income in SSR, while in case of the regional models no significant changes in cloudiness can be detected. The reduction of SSR in RCMs can be attributed to increasing atmospheric absorption in line with the increase of water vapor content. Both global and regional models overestimate SSR in absolute terms as compared to surface observations, in line with an underestimation of cloud cover. Regional models further have difficulties to adequately reproduce the observed trends in SSR over the past decades.

Keywords

Surface solar radiation CMIP5 global climate model EURO-CORDEX regional climate model Cloudiness Atmospheric absorption 

Notes

Acknowledgements

The first author thanks for the Scientific Exchange Programme NMS-CH, for supporting by SCIEX postdoctoral fellowship (No. 13.155-2) and for the Young Research Grant supported by Babes-Bolyai University (No. GTC-31779/2016).The study also received support from the CEA-DSM CLLIMIX project.

Supplementary material

382_2016_3471_MOESM1_ESM.docx (8 mb)
Supplementary material 1 (DOCX 8216 KB)

References

  1. Alexandru A, de Elia R, Laprise R (2007) Internal variability in regional climate downscaling at the seasonal scale. Mon Weather Rev 135(9):3221–3238CrossRefGoogle Scholar
  2. Allen RJ, Norris JR, Wild M (2013) Evaluation of multidecadal variability in CMIP5 surface solar radiation and inferred underestimation of aerosol direct effects over Europe, China, Japan, and India. J Geophys Res 118:6311–6336CrossRefGoogle Scholar
  3. ARPEGE-Climate Version 5.2 (2011). http://www.cnrm-game-meteo.fr/gmgec/arpege-climat/ARPCLI-V5.2/doca/arp52ca.pdf. Accessed 30 Sept 2016
  4. Baldauf M, Schulz JP (2004) Prognostic precipitation in the Lokal-Modell (LM) of DWD. COSMO. Newslett 4:177–180Google Scholar
  5. Bellprat O, Kotlarski S, Lüthi D, Schär C (2012) Exploring perturbed physics ensembles in a regional climate model. J Climate 25:4582–4599CrossRefGoogle Scholar
  6. Bougeault P (1985) A simple parameterisation of the large-scale effects of cumulus convection. Mon Wea Rev 113:2108–2121CrossRefGoogle Scholar
  7. Caya D, Biner S (2004) Internal variability of RCM simulations over an annual cycle. Clim Dyn 22:33–46CrossRefGoogle Scholar
  8. Cherian R, Quaas J, Salzmann M, Wild M (2014) Pollution trends over Europe constrain global aerosol forcing as simulated by climate models. Geophys Res Lett 41:2176–2181. doi: 10.1002/2013GL058715 CrossRefGoogle Scholar
  9. Chiacchio M, Solmon F, Giorgi F, Stackhouse P, Wild M (2015) Evaluation of the radiation budget with a regional climate model over Europe and inspection of dimming and brightening. J Geophys Res 120:1951–1971. doi: 10.1002/2014JD022497 Google Scholar
  10. Collins WJ et al (2011) Development and evaluation of an Earth-System model- HadGEM2. Geosci Model Dev 4:1051–1075CrossRefGoogle Scholar
  11. Crook JA, Jones LA, Forster PM, Crook (2011) Climate change impacts on future photovoltaic and concentrated solar power energy output. Energy. Environ Sci 4(9):3101–3109Google Scholar
  12. Cuxart J, Bougeault P, Redelsperger JL (2000) A turbulence scheme allowing for mesoscale and large-eddy simulations. Q J R Meteorol Soc 126:1–30CrossRefGoogle Scholar
  13. Di Luca A, de Elía R, Laprise R (2015) Challenges in the quest for added value of regional climate dynamical downscaling. Curr Clim Change Rep 1:10–21. doi: 10.1007/s40641-015-0003-9 CrossRefGoogle Scholar
  14. Doms G, Förstner J, Heise E, Herzog HJ, Raschendorfer M, Schrodin R, Reinhardt T, Vogel G (2011) A description of the nonhydrostatic regional model LM. Part II: physical parameterization, Deutscher Wetterdienst. http://www.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf. Accessed 25 June 2016
  15. Dufresne JL et al (2012) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn doi: 10.1007/s00382-012-1636-1 Google Scholar
  16. Dunne JP et al (2012) GFDL’s ESM2 global coupled climate-carbon Earth System models. Part I: physical formulation and baseline simulation characteristics. J Clim 25:6646–6665CrossRefGoogle Scholar
  17. Dwyer JG, Norris JR, Ruckstuhl C (2010) Do climate models reproduce observed solar dimming and brightening over China and Japan? J Geophys Res 115:D00K08. doi: 10.1029/2009JD012945 CrossRefGoogle Scholar
  18. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 003296:2003. doi: 10.1029/2002JD Google Scholar
  19. Feser F, Rockel B, von Storch H, Winterfeldt J, Zahn M (2011) Regional climate models add value to global model data. Bull Am Meteor Soc 92:1181–1192CrossRefGoogle Scholar
  20. Finger D, Heinrich G, Gobiet A, Bauder A (2012) Projections of future water resources and their uncertainty in a glacierized catchment in the Swiss Alps and the subsequent effects on hydropower production during the 21st century. Water Resour Res 48:W02521. doi: 10.1029/2011WR010733 Google Scholar
  21. Folini D, Wild M (2011) Aerosol emissions and dimming/brightening in Europe: sensitivity studies with ECHAM5-HAM. J Geophys Res 116:D21104. doi: 10.1029/2011JD016227 CrossRefGoogle Scholar
  22. Fouquart Y, Bonnel B. (1980). Computations of solar heating of the earth’s atmosphere: A new parametrization. Beitr Phys Atmo 53:35–62Google Scholar
  23. Gaetani M et al (2014) The near future availability of photovoltaic energy in Europe and Africa in climate-aerosol modelling experiments. Renew Sust Energy Rev 38:706–716CrossRefGoogle Scholar
  24. García Díez M, Fernández J, Vautard R (2015) An RCM multiphysics ensemble over. Europe: multivariable evaluation to avoid error compensation. Clim Dyn 45(11):3141–3156. doi: 10.1007/s00382-015-2529-x CrossRefGoogle Scholar
  25. Gilgen H, Wild M, Ohmura A (1998) Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data. J Clim 11(8):2042–2061CrossRefGoogle Scholar
  26. Giorgi F, Bi X (2000) A study of internal variability of a regional climate model. J Geophys Res 105:29503–29521CrossRefGoogle Scholar
  27. Giorgi F, Gutowski Jr WJ (2015) Regional Dynamical Downscaling and the CORDEX Initiative. Annu Rev Environ Resour 40:467–490CrossRefGoogle Scholar
  28. Giorgi F, Marinucci MR, Visconti G (1990) Use of a limited area model nested in a general circulation model for regional climate simulation over Europe. J Geophys Res 95(18):413–418Google Scholar
  29. Gobiet A, Jacob D, EURO-CORDEX Community (2012) A new generation of regional climate simulations for Europe: the EURO-CORDEX initiative. Geophy Res Abstracts 14:EGU2012-8211Google Scholar
  30. Grell GA, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 015311:2002. doi: 10.1029/2002GL Google Scholar
  31. Hahn CJ, Warren SG (2003) Cloud climatology for land stations worldwide, 1971–1996, NDP-026D. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, doi: 10.3334/CDIAC/cli.ndp026d. http://cdiac.ornl.gov/epubs/ndp/ndp026d/ndp026d.html
  32. Haywood JM, Bellouin N, Jones A, Boucher O, Wild M, Shine KP (2011) The roles of aerosol, water vapor and cloud in future global dimming/brightening. J Geophys Res 116:D20203. doi: 10.1029/2011JD016000 CrossRefGoogle Scholar
  33. Hazeleger W et al (2012) EC-Earth V2.2: description and validation of a new seamless earth system prediction model. Clim Dyn 39:2611–2629CrossRefGoogle Scholar
  34. Hohenegger C, Vidale PL (2005) Sensitivity of the European climate to aerosol forcing as simulated with a regional climate model. J Geophys Res 110:D06201. doi: 10.1029/2004JD005335 CrossRefGoogle Scholar
  35. Hong SY, Dudhia J, Chen SH (2004) A revised approach to microphysical processes for the bulk parameterization of cloud and precipitation. Mon Weather Rev 132:103–120CrossRefGoogle Scholar
  36. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341. http://www.dwd.de/bvbw/generator/DWDWWW/Content/Forschung/FE1/Veroeffentlichungen/Download/LMdocu__II__physics__0509,templateId=raw,property=publicationFile.pdf/LMdocu_II_physics_0509.pdf Accessed on 20 August 2015
  37. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res 113:D13103. doi: 10.1029/2008JD009944 CrossRefGoogle Scholar
  38. IPCC Climate Change (2013) The physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 1535. doi: 10.1017/CBO9781107415324 Google Scholar
  39. Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM et al (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14(2):563–578CrossRefGoogle Scholar
  40. Jaeger E, Anders I, Luthi D, Rockel B, Schar C, Seneviratne SI (2008) Analysis of ERA40-driven CLM simulations for Europe. Meteorol Z 17(4):349–367CrossRefGoogle Scholar
  41. Jerez S, Montavez JP, Gomez-Navarro JJ, Jimenez PA, Jimenez-Guerrero P, Lorente R, Gonzalez-Rouco JF (2012) The role of the land-surface model for climate change projections over the Iberian Peninsula. J Geophys Res 117:D01109CrossRefGoogle Scholar
  42. Jerez S, Montavez JP, Jimenez-Guerrero P, Gomez-Navarro JJ, Lorente-Plazas R, Zorita E (2013) A multi-physics ensemble of present-day climate regional simulations over the Iberian Peninsula. Clim Dyn 40(11–12):3023–3046CrossRefGoogle Scholar
  43. Jerez S, Thais F, Tobin I, Wild M, Colette A, Yiou P, Vautard R (2015) The CLIMIX model: a tool to create and evaluate spatially-resolved scenarios of photovoltaic and wind power development. Renew Sustain Energy Rev 42:1–15. doi: 10.1016/j.rser.2014.09.041 CrossRefGoogle Scholar
  44. Kain JS, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47:2784–2802CrossRefGoogle Scholar
  45. Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: the Kain-Fritsch scheme. The representation of cumulus convection in numerical models. Meteorol Monogr 24:165–170Google Scholar
  46. Katragkou E, García-Díez M, Vautard R, Sobolowski S, Zanis P, Alexandri G, Cardoso RM, Colette A, Fernandez J, Gobiet A, Goergen K, Karacostas T, Knist S, Mayer S, Soares PMM, Pytharoulis I, Tegoulias I, Tsikerdekis A, Jacob D (2015) Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble. Geosci Model Dev 8:603–618. doi: 10.5194/gmd-8-603-2015 CrossRefGoogle Scholar
  47. Kinne S, O’Donnel D, Stier P, Kloster S, Zhang K, Schmidt H, Rast S, Giorgetta M, Eck FT, Stevens B (2013) HAC-v1: a new global aerosol climatology for climate studies. J Adv Model Earth Syst 5:1–37. doi: 10.1002/jame.20035 CrossRefGoogle Scholar
  48. Klein SA, Zhang Y, Zelinka MD, Pincus R, Boyle J, Gleckler PJ (2013) Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. J Geophys Res Atmos 118:1329–1342. doi: 10.1002/jgrd.50141 CrossRefGoogle Scholar
  49. Kothe S, Dobler A, Beck A, Ahrens B (2011) The radiation budget in a regional climate model. Clim Dyn 36:1023–1036. doi: 10.1007/s00382-009-0733-2 CrossRefGoogle Scholar
  50. Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schär C, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V (2014) Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7:1297–1333. doi: 10.5194/gmd-7-1297-2014 CrossRefGoogle Scholar
  51. Kupiainen M, Samuelsson P, Jones C, Jansson C, Willén U, Hansson U, Ullerstig A, Wang S, Döscher R (2011), Rossby Centre regional atmospheric model, RCA4. Rossby Centre Newsletter, June 2011. SMHI, SE-60176 Norrköping, Sweden, http://www.smhi.se/en/research/research-departments/climate-research-rossby-centre2-552/rossby-centre-regional-atmospheric-model-rca4-1.16562. Acceesed 25 June 2016
  52. Lamarque JF, Bond T, Eyring V, Granier C, Heil A, Klimont Z, van Vuuren D (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10:7017–7039CrossRefGoogle Scholar
  53. Lara-Fanego V, Ruiz-Arias JA, Pozo-Vázquez D, Santos-Alamillos FJ, Tovar- Pescador J (2012) Evaluation of the WRF model solar irradiance forecasts in Andalusia (southern Spain). Sol Energy 86(8):2200–2218CrossRefGoogle Scholar
  54. Li JLF, Waliser DE, Stephens G, Lee S, L’Ecuyer T, Kato S, Loeb N, Ma HY (2013) Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. J Geophys Res Atmos 118(15):8166–8184. doi: 10.1002/jgrd.50378 CrossRefGoogle Scholar
  55. Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Bound Layer Meteorol 17:187–202CrossRefGoogle Scholar
  56. Lucas-Picher P, Caya D, de Elía R, Laprise R (2008) Investigation of regional climate models’ internal variability with a tenmember ensemble of 10-year simulations over a large domain. Clim Dyn. 31:927–940CrossRefGoogle Scholar
  57. Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48:RG3003. doi: 10.1029/2009RG000314 CrossRefGoogle Scholar
  58. Müller C, Robertson RD (2014) Projecting future crop productivity for global economic modeling. Agric Econ 45:37–50. doi: 10.1111/agec.12088 CrossRefGoogle Scholar
  59. Nabat P, Somot S, Mallet M, Sanchez-Lorenzo A, Wild M (2014) Contribution of anthropogenic sulfate aerosols to the changing Euro-Mediterranean climate since 1980. Geophys Res Lett 41(15):5605–5611. doi: 10.1002/2014GL060798 CrossRefGoogle Scholar
  60. Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117:536­–549Google Scholar
  61. Ohmura A, Gilgen H, Wild M (1989) Global Energy Balance Archive, GEBA-World Climate Programme-Water Project A7, Report 1: introduction. Zürcher Geographische Schriften, No.34. Fachvereine Verlag, Zurich, p 62Google Scholar
  62. Ohmura A, Dutton EG, Forgan B, Frohlich C, Gilgen H, Hegner H, Heimo A, Konig-Langlo G, McArthur B, Muller G, Philipona R, Pinker R, Whitlock CH, Dehne K, Wild M (1998) Baseline surface radiation network (bsrn/wcrp): new precision radiometry for climate research. Bull Am Meteorol Soc 79(10):2115–2136CrossRefGoogle Scholar
  63. Paeth H, Mannig B (2013) On the added value of regional climate modeling in climate change assessment. Clim Dyn 41:1057–1066. doi: 10.1007/s00382-012-1517-7 CrossRefGoogle Scholar
  64. Panagea IS, Tsanis IK, Koutroulis AG, Grillakis MG (2014) Climate change impact on photovoltaic energy output: the case of Greece. Adv Meteorol 2014:264506CrossRefGoogle Scholar
  65. Pasicko R, Brankovic C, Simic Z (2012) Assessment of climate change impacts on energy generation from renewable sources in Croatia. Renew Energy 46:224–231CrossRefGoogle Scholar
  66. Pessacg NL, Solman SA, Samuelsson P, Sanchez E, Marengo J, Li L, Remedio ARC, da Rocha RP, Mourao C, Jacob D (2014) The surface radiation budget over South America in a set of regional climate models from the CLARIS-LPB project. Clim Dyn 43:1221–1239. doi: 10.1007/s00382-013-1916-4 CrossRefGoogle Scholar
  67. Rasch PJ, Kristjánsson JE (1998) A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J Climate 11:1587–1614CrossRefGoogle Scholar
  68. Remund J, Muller SC (2010) Trends in global radiation between 1950 and 2100. 10th EMS Annual Meeting, 10th European Conference on Applications of Meteorology (ECAM). European Meteorological Society (EMS), ZurichGoogle Scholar
  69. Ricard JL, Royer JF (1993) A statistical cloud scheme for use in an AGCM. Ann Geophys 11:1095–1115Google Scholar
  70. Ritter B, Geleyn JF (1992) A comprehensive radiation scheme of numerical weather prediction with potential application to climate simulations. Mon Weather Rev 120:303–325CrossRefGoogle Scholar
  71. Rotstayn LD, Jeffrey SJ, Collier MA, Dravitzki SM, Hirst AC, Syktus JI, Wong KK (2012) Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. Atmos Chem Phys 12:6377–6404CrossRefGoogle Scholar
  72. Ruckstuhl C, Norris JR (2009) How do aerosol histories affect solar ‘‘dimming’’ and ‘‘brightening’’ over Europe? IPCC-AR4 models versus observations. J Geophys Res 114:D00D04. doi: 10.1029/2008JD011066 CrossRefGoogle Scholar
  73. Rummukainen M (2010) State-of-the-art with regional climate models. Wiley Interdiscip Rev Clim Change 1(1):82–96CrossRefGoogle Scholar
  74. Samuelsson P, Gollvik S, Ullerstig A (2006) The land-surface scheme of the Rossby Centre regional atmospheric climate model (RCA3). SMHI Rep Met 122Google Scholar
  75. Samuelsson P, Jones C, Willén U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjellström E, Nikulin G and Wyser K (2011) The Rossby Centre Regional Climate Model RCA3: model description and performance. Tellus 63 A. doi: 10.1111/j.1600-0870.2010.00478.x Google Scholar
  76. Sass BH, Rontu L, Savijaärvi H, Räisänen P (1994) HIRLAM-2 radiation scheme: documentation and tests. SMHI HIRLAM Technical Report No. 16Google Scholar
  77. Savijärvi H (1990) A fast radiation scheme for mesoscale model and short-range forecast models. J Appl Meteorol 29:437–447CrossRefGoogle Scholar
  78. Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW, Clark DB, Dankers R, Eisner S, Fekete BM, Colón-González FJ, Gosling SN, Kim H, Liu X, Masaki Y, Portmann FT, Satoh Y, Stacke T, Tang Q, Wada Y, Wisser D, Albrecht T, Frieler K, Piontek F, Warszawski L, Kabat P (2014) Multi-model assessment of water scarcity under climate change. PNAS 111(9):3245–3250. doi: 10.1073/pnas.1222460110 CrossRefGoogle Scholar
  79. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Teuling AJ (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev 99(3):125–161CrossRefGoogle Scholar
  80. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF Version 3, NCAR/TN-475+STR, NCAR Technical Note, June 2008Google Scholar
  81. Stanhill G, Cohen S (2001) Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric For Meteorol 107(4):255–278CrossRefGoogle Scholar
  82. Szentimrey T (2003) Multiple analysis of series for homogenization (MASH); Verification procedure for homogenized time series. In: Fourth seminar for homogenization and quality control in climatological databases, WMO, Budapest, 56:193–201Google Scholar
  83. Tanré D, Geleyn J, Slingo J (1984) First results of the introduction of an advanced aerosol-radiation interaction in ECMWF low resolution global model. In: Gerber H, Deepak A (eds) Aerosols and their climatic effects, A. Deepak, Hampton, pp. 133–177Google Scholar
  84. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of Cmip5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498CrossRefGoogle Scholar
  85. Tegen I, Hollrig P, Chin M, Fung I, Jacob D, Penner J (1997) Contribution of different aerosol species to the global aerosol extinction optical thickness: estimates from model results. J Geophys Res 102(23 895–23):915Google Scholar
  86. Tian T, Boberg F, Christensen OB, Christensen JH, She J, Vihma T (2013) Resolved complex coastlines and land-sea contrasts in a high-resolution regional climate model: a comparative study using prescribed and modelled SSTs. Tellus A 65: 19951. doi: 10.3402/tellusa.v65i0.19951 CrossRefGoogle Scholar
  87. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1799CrossRefGoogle Scholar
  88. Tjiputra JF et al (2013) Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geophys Model Dev 6:301–325CrossRefGoogle Scholar
  89. Torma CS, Giorgi F, Coppola E (2015) Added value of regional climate modeling over areas characterized by complex terrain—Precipitation over the Alps. J Geophys Res Atmos 120:3957–3972. doi: 10.1002/2014JD022781 CrossRefGoogle Scholar
  90. Troen I, Mahrt L (1986). A simple model of the atmosphere boundary layer; sensitivity to surface evaporation. Bound Layer Meteorol 37:129–148.CrossRefGoogle Scholar
  91. Turco M, Sanna A, Herrera S, Llasat MC, Gutiérrez JM (2013) Large biases and inconsistent climate change signals in ENSEMBLES regional projections. Clim Change 120:859–869CrossRefGoogle Scholar
  92. Turnock ST, Spracklen DV, Carslaw KS, Mann GW, Woodhouse MT, Forster PM, Haywood J, Johnson CE, Dalvi M, Bellouin N, Sanchez-Lorenzo A (2015) Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009. Atmos Chem Phys Discuss 15:13457–13513CrossRefGoogle Scholar
  93. Vannitsem S, Chomé F (2005) One-way nested regional climate simulations and domain size. J Clim 18:229–233CrossRefGoogle Scholar
  94. Vautard R, Gobiet A, Jacob D, Belda M, Colette A, Déqué M et al (2013) The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim Dyn 41:2555–2575. doi: 10.1007/s00382-013-1714-z CrossRefGoogle Scholar
  95. Vezzoli R, Mercogliano P, Pecora S, Zollo AL, Cacciamani C (2015) Hydrological simulation of Po River (North Italy) discharge under climate change scenarios using the RCM COSMO-CLM. Sci Total Environ 521–522:346–358CrossRefGoogle Scholar
  96. Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine M-P, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40(9–10):2091–2121CrossRefGoogle Scholar
  97. von Salzen K et al (2013) The Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4). Part I: representation of physical processes. Atmos Ocean 51:104–125CrossRefGoogle Scholar
  98. Watanabe M et al (2010) Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J Clim 23:6312–6335CrossRefGoogle Scholar
  99. Wilcox LJ, Highwood EJ, Dunstone NJ (2013) The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ Res Lett. doi: 10.1088/1748-9326/8/2/024033 Google Scholar
  100. Wild M (2009) Global dimming and brightening: A review. J Geophys Res 114:D00D16. doi: 10.1029/2008JDO11470 Google Scholar
  101. Wild M, Schmucki E (2011) Assessment of global dimming and brightening in IPCC-AR4/CMIP3 models and ERA40. Clim Dyn 37(7):1671–1688. doi: 10.1007/s00382-010-0939-3 CrossRefGoogle Scholar
  102. Wild M, Ohmura A, Gilgen H, Roeckner E (1995) Regional climate simulation with a high resolution GCM: surface radiative fluxes. Clim Dyn 11:469–486CrossRefGoogle Scholar
  103. Wild M, Dümenil L, Schulz JP (1996) Regional climate simulation with a high resolution GCM: surface hydrology. Clim Dyn 12:755–774CrossRefGoogle Scholar
  104. Wild M, Ohmura A, Cubasch U (1997) GCM simulated surface energy fluxes in climate change experiments. J Clim 10:3093–3110CrossRefGoogle Scholar
  105. Wild M et al (2005) From dimming to brightening: decadal changes in surface solar radiation. Science 308:847–850. doi: 10.1126/science.1103215 CrossRefGoogle Scholar
  106. Wild M, Folini D, Schär C, Loeb N, Dutton EG, König-Langlo G (2013) The global energy balance from a surface perspective. Clim Dyn 40:3107–3134. doi: 10.1007/s00382-012-1569-8 CrossRefGoogle Scholar
  107. Wild M, Folini D, Henschel F, Fischer N, Müller B (2015a) Projections of long-term changes in solar radiation based on CMIP5 climate models and their influence on energy yields of photovoltaic systems. Sol Energy 116:12–24Google Scholar
  108. Wild M, Folini D, Hakuba MZ, Schär C, Seneviratne SI, Kato S, Rutan D, Ammann C, Wood EF, König-Langlo G (2015b) The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Clim Dyn 44(11–12):3393–3429. doi: 10.1007/s00382-014-2430-z
  109. Xie SP, Deser C, Vecchi GA, Collins M, Delworth TL, Hall A, Hawkins E, Johnson NC, Cassou C, Giannini A, Watanabe M (2015) Towards predictive understanding of regional climate change. Nat Clim Change 5:921–930CrossRefGoogle Scholar
  110. Zhang MH et al (2005) Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J Geophys Res 110:D15S02. doi: 10.1029/2004JD005021 Google Scholar
  111. Zubler EM, Folini D, Lohmann U, Lüthi D, Schär C, Wild M (2011a) Simulation of dimming and brightening in Europe from 1958 to 2001 using a regional climate model. J Geophys Res 116:D18205. doi: 10.1029/2010JD015396
  112. Zubler EM, Folini D, Lohmann U, Lüthi D, Muhlbauer A, Pousse-Nottelmann S, Schär C, Wild M (2011b) Implementation and evaluation of aerosol and cloud microphysics in a regional climate model. J Geophys Res 116:D02211. doi: 10.1029/2010JD014572
  113. Zubler EM, Lohmann U, Lüthi D, Schär C (2011c) Intercomparison of aerosol climatologies for use in a regional climate model over Europe. Geophys Res Lett 38:L15705. doi: 10.1029/2011GL048081

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Blanka Bartók
    • 1
  • Martin Wild
    • 2
  • Doris Folini
    • 2
  • Daniel Lüthi
    • 2
  • Sven Kotlarski
    • 3
  • Christoph Schär
    • 2
  • Robert Vautard
    • 4
  • Sonia Jerez
    • 5
  • Zoltán Imecs
    • 1
  1. 1.Hungarian Department of Geography, Faculty of GeographyBabes-Bolyai UniversityCluj-NapocaRomania
  2. 2.Institute for Atmospheric and Climate ScienceETH ZurichZurichSwitzerland
  3. 3.Federal Office of Meteorology and Climatology MeteoSwissZurich-AirportSwitzerland
  4. 4.Laboratoire des Sciences du Climat et de l’EnvironnementIPSL, CEA/CNRS/UVSQGif-sur-YvetteFrance
  5. 5.Department of PhysicsUniversity of MurciaMurciaSpain

Personalised recommendations