Climate Dynamics

, Volume 49, Issue 7–8, pp 2407–2429 | Cite as

Multi-model assessment of linkages between eastern Arctic sea-ice variability and the Euro-Atlantic atmospheric circulation in current climate

  • J. García-SerranoEmail author
  • C. Frankignoul
  • M. P. King
  • A. Arribas
  • Y. Gao
  • V. Guemas
  • D. Matei
  • R. Msadek
  • W. Park
  • E. Sanchez-Gomez


A set of ensemble integrations from the Coupled Model Intercomparison Project phase 5, with historical forcing plus RCP4.5 scenario, are used to explore if state-of-the-art climate models are able to simulate previously reported linkages between sea-ice concentration (SIC) anomalies over the eastern Arctic, namely in the Greenland–Barents–Kara Seas, and lagged atmospheric circulation that projects on the North Atlantic Oscillation (NAO)/Arctic Oscillation (AO). The study is focused on variability around the long-term trends, so that all anomalies are detrended prior to analysis; the period of study is 1979–2013. The model linkages are detected by applying maximum covariance analysis. As also found in observational data, all the models considered here show a statistically significant link with sea-ice reduction over the eastern Arctic followed by a negative NAO/AO-like pattern. If the simulated relationship is found at a lag of one month, the results suggest that a stratospheric pathway could be at play as the driving mechanism; in observations this is preferentially shown for SIC in November. The interference of a wave-like anomaly over Eurasia, accompanying SIC changes, with the climatological wave pattern appears to be key in setting the mediating role of the stratosphere. On the other hand, if the simulated relationship is found at a lag of two months, the results suggest that tropospheric dynamics are dominant, presumably due to transient eddy feedback; in observations this is preferentially shown for SIC in December. The results shown here and previous evidence from atmosphere-only experiments emphasize that there could be a detectable influence of eastern Arctic SIC variability on mid-latitude atmospheric circulation anomalies. Even if the mechanisms are robust among the models, the timing of the simulated linkages strongly depends on the model and does not generally mimic the observational ones. This implies that the atmospheric sensitivity to sea-ice changes largely depends on the mean-flow and parameterizations, which could lead to misleading conclusions elsewhere if a multi-model ensemble-mean approach is adopted. It might also represent an important source of uncertainty in climate prediction and projection. Modelling efforts are hence further required to improve representation of the background atmospheric circulation and reduce biases, in order to attain more accurate covariability.


Arctic sea ice variability NAO/AO pattern Atmospheric teleconnection 



The research leading to these results has received funding from the European Union 7th Framework Programme (FP7 2007-2013), under grant agreement No. 308299 (NACLIM— JG-S was partially supported by the H2020-funded MSCA-IF-EF DPETNA project (GA No. 655339). This work was also supported by the BMBF project CLIMPRE InterDec (FKZ:01LP1609A; DM) and the RCN project KLIMAFORSK InterDec (260393; YG) within the framework of JPI CLIM Belmont-Forum InterDec consortial project. JG-S and MPK thank the 6th Severo Ochoa mobility programme for funding the visit of the latter to BSC-CNS in October 2015. The authors thank Ileana Bladé (UB, Spain) and Lantao Sun (CIRES-NOAA/ESRL, USA) for useful discussions, and Neven S. Fučkar (BSC-CNS) for his help during the review process. Technical support at BSC-CNS (Computational Earth Sciences group) is sincerely acknowledged. The authors are also grateful to the anonymous reviewers for their comments, which helped to improve the clarity of the manuscript.

Supplementary material

382_2016_3454_MOESM1_ESM.doc (6.9 mb)
Supplementary material 1 (DOC 7016 kb)


  1. Alexander MA, Bhatt US, Walsh JE, Timlin MS, Miller JS, Scott JD (2004) The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J Clim 17:890–905CrossRefGoogle Scholar
  2. Ambaum MHP, Hoskins BJ (2002) The NAO troposphere–stratosphere connection. J Clim 15:1969–1978CrossRefGoogle Scholar
  3. Bader J, Mesquita MDS, Hodges KI, Keenlyside N, Osterhus S, Miles M (2011) A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: observations and projected changes. Atmos Res 101:809–834CrossRefGoogle Scholar
  4. Balmaseda MA, Ferranti L, Molteni F, Palmer TN (2010) Impact of 2007 and 2008 Arctic ice anomalies on the atmospheric circulation: implications for long-range predictions. Q J R Meteor Soc 136:1655–1664CrossRefGoogle Scholar
  5. Barnes EA (2013) Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys Res Lett 40:4734–4739. doi: 10.1002/grl.50880 CrossRefGoogle Scholar
  6. Barnes EA, Polvani LM (2015) CMIP5 projections of Arctic Amplification, of the North American/North Atlantic circulation, and of their relationship. J Clim 28:5254–5271CrossRefGoogle Scholar
  7. Barnes EA, Screen JA (2015) The impact of Arctic warming on the midlatitude jet-stream: can it? has it? will it? WIREs Clim Change 6:277–286. doi: 10.1002/wcc.337 CrossRefGoogle Scholar
  8. Bretherton SB, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560CrossRefGoogle Scholar
  9. Bueh C, Nakamura H (2007) Scandinavian pattern and its climatic impact. Q J R Meteorol Soc 133:2117–2131CrossRefGoogle Scholar
  10. Charlton-Perez AJ et al (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Geophys Res 118:2494–2505Google Scholar
  11. Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J, Jones J (2014) Recent Arctic amplification and extreme mid-latitude weather. Nature Geosci 7:627–637CrossRefGoogle Scholar
  12. Comiso JC (2000, updated 2013) Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS—version 2. NASA DAAC at the National Snow and Ice Data Center, Boulder, CO, USA.
  13. Czaja A, Frankignoul C (2002) Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J Clim 15:606–623CrossRefGoogle Scholar
  14. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorl Soc 137:553–597CrossRefGoogle Scholar
  15. Deser C, Magnusdottir G, Saravanan R, Phillips A (2004) The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: direct and indirect components of the response. J Clim 17:877–889CrossRefGoogle Scholar
  16. Deser C, Tomas RA, Peng S (2007) The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J Clim 20:4751–4767CrossRefGoogle Scholar
  17. Deser C, Tomas R, Alexander MA, Lawrence D (2010) The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J Clim 23:333–351CrossRefGoogle Scholar
  18. Doblas-Reyes FJ, Pavan V, Stephenson DB (2003) Multi-model seasonal hindcasts of the NAO. Clim Dyn 21:501–514CrossRefGoogle Scholar
  19. Ferreira D, Frankignoul C (2005) The transient atmospheric response to midlatitude SST anomalies. J Clim 18:1049–1067CrossRefGoogle Scholar
  20. Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39:L06801. doi: 10.1029/2012GL051000 CrossRefGoogle Scholar
  21. Francis JA, Vavrus SJ (2015) Evidence for a waiver jet stream in response to rapid Arctic warming. Environ Res Lett 10:014005. doi: 10.1088/1748-9326/10/1/014005 CrossRefGoogle Scholar
  22. Francis JA, Chan W, Leathers DJ, Miller JR, Veron DE (2009) Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys Res Lett 36:L07503. doi: 10.1029/2009GL037274 CrossRefGoogle Scholar
  23. Frankignoul C, Sennéchael N, Cauchy P (2014) Observed atmospheric response to cold season sea ice variability in the Arctic. J Clim 27:1243–1254CrossRefGoogle Scholar
  24. Gao Y, Sun J, Li F, He S, Sandven S, Yan Q, Zhang Z, Lohmann K, Keenlyside N, Furevik T, Suo L (2015) Arctic sea ice and Eurasian climate: a review. Adv Atmos Sci 32:92–114CrossRefGoogle Scholar
  25. García-Serrano J, Frankignoul C (2015) On the feedback of the winter NAO-driven sea ice anomalies. Clim Dyn. doi: 10.1007/s00382-015-2922-5 Google Scholar
  26. García-Serrano J, Haarsma RJ (2016) Non-annular, hemispheric signature of the winter North Atlantic Oscillation. Clim Dyn. doi: 10.1007/s00382-016-3292-3 Google Scholar
  27. García-Serrano J, Frankignoul C, Gastineau G, de la Cámara A (2015) On the predictability of the winter Euro-Atlantic climate: lagged influence of autumn Arctic sea ice. J Clim 28:5195–5216CrossRefGoogle Scholar
  28. Garfinkel CI, Hartmann DL, Sassi F (2010) Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J Clim 23:3282–3299CrossRefGoogle Scholar
  29. Germe A, Chevallier M, Salas y Mélia D, Sanchez-Gomez E, Cassou C (2014) Interannual predictability of Arctic sea ice in a global climate model: regional contrasts and temporal evolution. Clim Dyn. doi: 10.1007/s00382-014-2071-2 Google Scholar
  30. Grassi B, Redaelli G, Visconti G (2013) Arctic sea ice reduction and extreme climate events over the Mediterranean region. J Clim 26:10101–10110CrossRefGoogle Scholar
  31. Guemas V, Doblas-Reyes FJ, Andreu-Burillo I, Asif M (2013) Retrospective prediction of the global warming slowdown in the past decade. Nature Clim Change 3:649–653CrossRefGoogle Scholar
  32. Holton JR (1979) An introduction to dynamic meteorology, 3rd edn. Academic Press, New YorkGoogle Scholar
  33. Honda M, Inoue J, Yamane S (2009) Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys Res Lett 36:L08707. doi: 10.1029/2008GL037079 CrossRefGoogle Scholar
  34. Hopsch S, Cohen J, Dethloff K (2012) Analysis of a link between fall Arctic sea ice concentration and atmospheric patterns in the following winter. Tellus 64A:18624CrossRefGoogle Scholar
  35. Hoskins BJ, Karoly D (1981) The steady linear response to of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196CrossRefGoogle Scholar
  36. Inoue J, Hori ME, Takaya K (2012) The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. J Clim 25:2561–2568CrossRefGoogle Scholar
  37. Jaiser R, Dethloff K, Handorf D, Rinke A, Cohen J (2012) Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus 64A:11595CrossRefGoogle Scholar
  38. Jones CD et al (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570CrossRefGoogle Scholar
  39. Jung T, Kasper MA, Semmler T, Serrar S (2014) Arctic influence on subseasonal midlatitude prediction. Geophys Res Lett 41:3676–3680CrossRefGoogle Scholar
  40. Jung T, Doblas-Reyes FJ, Goessling H, Guemas V, Bitz C, Buontempo C, Caballero R, Jakobson E, Jungclaus J, Karcher M, Koenigk T, Matei D, Overland J, Spengler T, Yang S (2015) Polar-lower latitude linkages and their role in weather and climate prediction. Bull Am Meteorol Soc 96:ES197–ES200CrossRefGoogle Scholar
  41. Karspeck A, Yeager S, Danabasoglu G, Teng H (2014) An evaluation of experimental decadal predictions using CCSM4. Clim Dyn 44:907–923CrossRefGoogle Scholar
  42. Kim B-M, Son S-W, Min S-K, Jeong J-H, Kim S-J, Zhang X, Shim T, Yoon J-H (2014) Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nature Commun 5:4646. doi: 10.1038/ncomms5646 CrossRefGoogle Scholar
  43. King MP, Hell M, Keenlyside N (2015) Investigation of the atmospheric mechanisms related to the autumn sea ice and winter circulation link in the Northern Hemisphere. Clim Dyn. doi: 10.1007/s00382-015-2639-5 Google Scholar
  44. Koenigk T, Caian M, Nikulin G, Schimanke S (2015) Regional Arctic sea ice variations as predictor for winter climate conditions. Clim Dyn. doi: 10.1007/s00382-015-2586-1 Google Scholar
  45. Kolstad EW, Charlton-Perez AJ (2011) Observed and simulated precursors of stratospheric polar vortex anomalies in the Northern Hemisphere. Clim Dyn 37:1443–1456CrossRefGoogle Scholar
  46. Kretschmer M, Coumou D, Runge J, Donges JF (2016) Using causal effect networks to analyze different Arctic drivers of mid-latitude winter circulation. J Clim 29:4069–4081CrossRefGoogle Scholar
  47. Kug J-S, Jeong J-H, Jang Y-S, Kim B-M, Folland CK, Min S-K, Son S-W (2015) Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nature Geosci 8:759–762CrossRefGoogle Scholar
  48. Kuroda Y, Kodera K (1999) Role of planetary waves in the stratosphere–troposphere coupled variability in the Northern Hemisphere winter. Geophys Res Lett 26:2375–2378CrossRefGoogle Scholar
  49. Kushnir Y, Robinson WA, Bladé I, Hall NMJ, Peng S, Sutton R (2002) Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J Clim 15:2233–2256CrossRefGoogle Scholar
  50. Langehaug HR, Geyer F, Smedsrud LH, Gao Y (2013) Arctic sea decline and ice export in the CMIP5 historical simulations. Ocean Model 71:114–126CrossRefGoogle Scholar
  51. Lee Y-Y, Black RX (2015) The structure and dynamics of the stratospheric Northern Annular mode in CMIP5 models. J Clim 28:86–107CrossRefGoogle Scholar
  52. Li F, Wang H (2013) Autumn sea ice cover, winter Northern Hemisphere Annular Mode, and winter precipitation in Eurasia. J Clim 26:3968–3981CrossRefGoogle Scholar
  53. Liu J, Curry JA, Wang H, Song M, Horton RM (2012) Impact of declining Arctic sea ice on winter snowfall. Proc Natl Acad Sci 109:4074–4079CrossRefGoogle Scholar
  54. Magnusdottir G, Deser C, Saravanan R (2004) The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: main features and storm track characteristics of the response. J Clim 17:857–876CrossRefGoogle Scholar
  55. Manzini E et al (2014) Northern winter climate change: assessment of uncertainty in CMIP5 projections related to stratosphere–troposphere coupling. J Geophys Res. doi: 10.1002/2013JD021403 Google Scholar
  56. Meehl GA et al (2014) Decadal climate prediction: an update from the trenches. Bull Am Meteorol Soc 95:243–267CrossRefGoogle Scholar
  57. Mignot J, García-Serrano J, Swingedouw D, Germe A, Nguyen S, Ortega P, Guilyardi E, Ray S (2015) Decadal prediction skill in the ocean with surface nudging in the IPSL-CM5A-LR climate model. Clim Dyn. doi: 10.1007/s00382-015-2898-1 Google Scholar
  58. Mitchell DM, Gray LJ, Anstey J, Baldwin MP, Charlton-Perez AJ (2013) The influence of stratospheric vortex displacements and splits on surface climate. J Clim 26:2668–2682CrossRefGoogle Scholar
  59. Mori M, Watanabe M, Shiogama H, Inoue J, Kimoto M (2014) Robust Arctic sea-ice influence on the frequent Eurasian cold winters in the recent past. Nature Geosci. doi: 10.1038/ngeo2277 Google Scholar
  60. Msadek R, Vecchi GA, Winton M, Gudgel RG (2014a) Importance of initial conditions in seasonal predictions of Arctic sea ice extent. Geophys Res Lett. doi: 10.1002/2014GL060799 Google Scholar
  61. Msadek R, Delworth TL, Rosati A, Anderson W, Vecchi G, Chang Y-S, Dixon KW, Gudgel RG, Stern W, Winttenberg A, Yang X, Zeng F, Zhang R, Zhang S (2014b) Predicting a decadal shift in North Atlantic climate variability using the GFDL forecast system. J Clim 27:6472–6496CrossRefGoogle Scholar
  62. Nakamura T, Yamazaki K, Iwamoto K, Honda M, Miyoshi Y, Ogawa Y, Ukita J (2015) A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice rediction in late autumn. J Geophys Res Atmos. doi: 10.1002/2014JD022848 Google Scholar
  63. Nakamura T, Yamazaki K, Iwamoto K, Honda M, Miyoshi Y, Ogawa Y, Tomikawa Y, Ukita J (2016) The stratospheric pathway for Arctic impacts on midlatitude climate. Geophys Res Lett 43. doi: 10.1002/2016GL068330 Google Scholar
  64. Overland J, Francis JA, Hall R, Hanna E, Kim S-J, Vihma T (2015) The melting Arctic and mid-latitude weather patterns: are they connected? J Clim 28:7917–7932CrossRefGoogle Scholar
  65. Peings Y, Magnusdottir G (2014) Response to the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: a numerical study with CAM5. J Clim 27:244–264CrossRefGoogle Scholar
  66. Perlwitz J, Hoerling M, Dole R (2015) Arctic tropospheric warming and: causes and linkages to lower latitudes. J Clim 28:2154–2167CrossRefGoogle Scholar
  67. Petoukhov V, Semenov V (2010) A link between reduced Barents–Kara sea ice and cold winter extremes over northern continents. J Geophys Res 115:D21111. doi: 10.1029/2009JD013568 CrossRefGoogle Scholar
  68. Pohlmann H, Müller WA, Kulkarni K, Kameswarrao M, Matei D, Vamborg FSE, Kadow C, Illing S, Marotzke J (2013) Improved forecast skill in the tropics in the new MiKlip decadal climate predictions. Geophys Res Lett 40:5798–5802CrossRefGoogle Scholar
  69. Polvani LM, Waugh DW (2004) Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J Clim 17:3548–3554CrossRefGoogle Scholar
  70. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res. doi: 10.1029/2002JD002670 Google Scholar
  71. Reichler T, Kim J, Manzini E, Kröger J (2012) A stratospheric connection to Atlantic climate variability. Nature Geosci 5:783–787CrossRefGoogle Scholar
  72. Sanchez-Gomez E, Cassou C, Ruprich-Robert Y, Fernandez E, Terray L (2015) Drift dynamics in a coupled model initialized for decadal forecasts. Clim Dyn. doi: 10.1007/s00382-015-2678-y Google Scholar
  73. Scaife AA, Arribas A, Blockley E, Brookshaw A, Clark RT, Dunstone N, Eade R, Fereday D, Folland CK, Gordon M, Hermanson L, Knight JR, Lea DJ, MacLachlan C, Maidens A, Martin M, Peterson AK, Smith D, Vellinga M, Wallace E, Waters J, Williams A (2014) Skillful long-range prediction of European and North American winters. Geophys Res Lett 41:2514–2519CrossRefGoogle Scholar
  74. Screen JA, Simmonds I (2013) Exploring links between Arctic amplification and mid-latitude weather. Geophys Res Lett 40:959–964. doi: 10.1002/grl.50174 CrossRefGoogle Scholar
  75. Screen JA, Simmonds I, Deser C, Tomas R (2013) The atmospheric response to three decades of observed Arctic sea ice loss. J Clim 26:1230–1248CrossRefGoogle Scholar
  76. Screen JA, Deser C, Simmonds I, Tomas R (2014) Atmospheric impacts of Arctic sea-ice loss, 1979–2009: separating forced change from atmospheric internal variability. Clim Dyn 43:333–344CrossRefGoogle Scholar
  77. Screen JA, Deser C, Sun L (2015) Projected changes in regional extremes arising from Arctic sea loss. Environ Res Lett. doi: 10.1088/1748-9326/10/8/084006 Google Scholar
  78. Seierstad IA, Bader J (2009) Impact of a projected future Arctic sea ice reduction on extratropical storminess and the NAO. Clim Dyn 33:937–943CrossRefGoogle Scholar
  79. Semmler T, McGrath R, Wang S (2012) The impact of Arctic sea ice on the Arctic energy budget and on the climate of the Northern mid-latitudes. Clim Dyn 39:2675–2694CrossRefGoogle Scholar
  80. Semmler T, Jung T, Serrar S (2015) Fast atmospheric response to a sudden thinning of Arctic sea ice. Clim Dyn. doi: 10.1007/s00382-015-2629-7 Google Scholar
  81. Shaw TA, Perlwitz J, Weiner O (2014) Troposphere–stratosphere coupling: links to North Atlantic weather and climate, including their representation in CMIP5 models. J Geophys Res 119:5864–5880CrossRefGoogle Scholar
  82. Smith DM, Scaife AA, Boer GJ, Caian M, Doblas-Reyes FJ, Guemas V, Hawkins E, Hazeleger W, Hermanson L, Ho CK, Ishii M, Kharin V, Kimoto M, Kirtman BP, Lean J, Matei D, Merryfield WJ, Müller WA, Pohlmann H, Rosati A, Wouters B, Wyser K (2013) Real-time multi-model decadal predictions. Clim Dyn 41:2875–2888CrossRefGoogle Scholar
  83. Stockdale TN, Molteni F, Ferranti L (2015) Atmospheric initial conditions and the predictability of the Arctic Oscillation. Geophys Res Lett. doi: 10.1002/2014GL062681 Google Scholar
  84. Strong C, Magnusdottir G, Stern H (2009) Observed feedback between winter sea ice and the North Atlantic Oscillation. J Clim 22:6021–6032CrossRefGoogle Scholar
  85. Sun L, Deser C, Tomas RA (2015) Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J Clim 28:7824–7845CrossRefGoogle Scholar
  86. Swart NC, Fyfe JC, Hawkins E, Kay JE, Jahn A (2015) Influence of internal variability on Arctic sea-ice trends. Nature Clim Change 5:86–89CrossRefGoogle Scholar
  87. Takaya K, Nakamura H (2008) Precursory changes in planetary wave activity for midwinter surface pressure anomalies over the Arctic. J Meteorol Soc Jpn 86:415–427CrossRefGoogle Scholar
  88. Tang Q, Zhang X, Yang X, Francis JA (2013) Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ Res Lett 8:014036CrossRefGoogle Scholar
  89. Vihma T (2014) Effects of Arctic sea ice decline on weather and climate: a review. Surv Geophys 35:1175–1214CrossRefGoogle Scholar
  90. Walsh JE (2014) Intensified warming of the Arctic: causes and impacts on middle latitudes. Glob Planet Change 117:52–63CrossRefGoogle Scholar
  91. Wettstein JJ, Deser C (2014) Internal variability in projections of twenty-first-century Arctic sea ice loss: role of the large-scale atmospheric circulation. J Clim 27:527–550CrossRefGoogle Scholar
  92. Woollings T, Harvey B, Masato G (2014) Arctic warming, atmospheric blocking and cold European winters in CMIP5 models. Environ Res Lett 9:014002. doi: 10.188/1748-9326/9/1/014002 CrossRefGoogle Scholar
  93. Wu Q, Zhang X (2010) Observed forcing-feedback process between Northern Hemisphere atmospheric circulation and Arctic sea ice coverage. J Geophys Res. doi: 10.1029/2009JD013574 Google Scholar
  94. Wu L, He F, Liu Z, Li C (2007) Atmospheric teleconnections of tropical Atlantic variability: interhemispheric, tropical-extratropical, and cross-basin interactions. J Clim 20:856–870CrossRefGoogle Scholar
  95. Xie S-P, Deser C, Vecchi GA, Collins M, Delworth TL, Hall A, Hawkins E, Johnson NC, Cassou C, Giannini A, Watanabe M (2015) Towards predictive understanding of regional climate change. Nature Clim Change. doi: 10.1038/nclimate2689 Google Scholar
  96. Zhang R (2015) Mechanisms for low-frequency variability of summer Arctic sea ice extent. Proc Natl Acad Sci 112:4570–4575CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • J. García-Serrano
    • 1
    • 2
    Email author
  • C. Frankignoul
    • 1
  • M. P. King
    • 3
    • 4
  • A. Arribas
    • 5
  • Y. Gao
    • 6
    • 7
  • V. Guemas
    • 2
    • 8
  • D. Matei
    • 9
  • R. Msadek
    • 10
    • 11
  • W. Park
    • 12
  • E. Sanchez-Gomez
    • 11
  1. 1.LOCEAN/IPSLSorbonne Universités (UPMC)-CNRS-IRD-MNHNParisFrance
  2. 2.Earth Sciences DepartmentBarcelona Supercomputing Center (BSC-CNS)BarcelonaSpain
  3. 3.Uni Research ClimateBergenNorway
  4. 4.Bjerknes Centre for Climate Research (BCCR)BergenNorway
  5. 5.MetOffice – Hadley CentreExeterUK
  6. 6.Nansen-Zhu International Research CentreIAP/CASBeijingChina
  7. 7.Nansen Environmental and Remote Sensing Center (NERSC/BCCR)BergenNorway
  8. 8.Météo FranceCNRM/GMGECToulouseFrance
  9. 9.Max-Plank-Institut für MeteorologieHamburgGermany
  10. 10.Geophysical Fluid Dynamics Laboratory (GFDL)NOAAPrincetonUSA
  11. 11.CERFACS/CNRSToulouseFrance
  12. 12.GEOMAR Helmholtz Centre for Ocean ResearchKielGermany

Personalised recommendations