Climate Dynamics

, Volume 49, Issue 5–6, pp 2093–2113 | Cite as

Extra-tropical origin of equatorial Pacific cold bias in climate models with links to cloud albedo

  • Natalie J. Burls
  • Leslie Muir
  • Emmanuel M. Vincent
  • Alexey Fedorov


General circulation models frequently suffer from a substantial cold bias in equatorial Pacific sea surface temperatures (SSTs). For instance, the majority of the climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) have this particular problem (17 out of the 26 models evaluated in the present study). Here, we investigate the extent to which these equatorial cold biases are related to mean climate biases generated in the extra-tropics and then communicated to the equator via the oceanic subtropical cells (STCs). With an evident relationship across the CMIP5 models between equatorial SSTs and upper ocean temperatures in the extra-tropical subduction regions, our analysis suggests that cold SST biases within the extra-tropical Pacific indeed translate into a cold equatorial bias via the STCs. An assessment of the relationship between these extra-tropical SST biases and local surface heat flux components indicates a link to biases in the simulated shortwave fluxes. Further sensitivity studies with a climate model (CESM) in which extra-tropical cloud albedo is systematically varied illustrate the influence of cloud albedo perturbations, not only directly above the oceanic subduction regions but across the extra-tropics, on the equatorial bias. The CESM experiments reveal a quadratic relationship between extra-tropical Pacific albedo and the root-mean-square-error in equatorial SSTs—a relationship with which the CMIP5 models generally agree. Thus, our study suggests that one way to improve the equatorial cold bias in the models is to improve the representation of subtropical and mid-latitude cloud albedo.


Cold tongue bias Tropical Pacific couple modeling Extra-tropical cloud albedo 



This research is supported by grants from NOAA:NA14OAR4310277 and NSF:AGS-1405272, as well as Grants NSF:AGS-1338427, NASA:NNX14AM19G, and NOAA:NA14OAR4310160. The CESM project is supported by the National Science Foundation and the Department of Energy Office of Science. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We also acknowledge the U.K. Met. Office for use of the HadISST dataset downloaded from; WOA 2013 from; CERES-EBAF Ed2.8 obtained from the National Aeronautics and Space Administration Langley Research Center Atmospheric Science Data Center (; the Large and Yeager COREV2 dataset from; the WHOI OAFlux from; IFREMER turbulent fluxes from; and the ISCCP D2 Data from We thank Brian Dobbins for his assistance in setting up the CESM simulations, as well as Bohua Huang and Matthew Thomas for insightful discussions.


  1. Alexander MA, Bladé I, Newman M et al (2010) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15:2205–2231. doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2 CrossRefGoogle Scholar
  2. Bellenger H, Guilyardi E, Leloup J et al (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018. doi: 10.1007/s00382-013-1783-z CrossRefGoogle Scholar
  3. Bentamy A, Grodsky SA, Katsaros K et al (2013) Improvement in air–sea flux estimates derived from satellite observations. Int J Remote Sens 34:5243–5261. doi: 10.1080/01431161.2013.787502 CrossRefGoogle Scholar
  4. Burls NJ, Fedorov AV (2014) What controls the mean east-west sea surface temperature gradient in the equatorial Pacific: the role of cloud albedo. J Clim 27:2757–2778. doi: 10.1175/JCLI-D-13-00255.1 CrossRefGoogle Scholar
  5. Capotondi A, Ham Y-G, Wittenberg A, Kug J-S (2015) Climate model biases and El Niño Southern Oscillation (ENSO) simulation. US CLIVAR Var Newsl 13:21–25Google Scholar
  6. Chiang JCH, Bitz CM (2005) Influence of high latitude ice cover on the marine intertropical convergence zone. Clim Dyn 25:477–496. doi: 10.1007/s00382-005-0040-5 CrossRefGoogle Scholar
  7. Cvijanovic I, Chiang JCH (2013) Global energy budget changes to high latitude North Atlantic cooling and the tropical ITCZ response. Clim Dyn 40:1435–1452. doi: 10.1007/s00382-012-1482-1 CrossRefGoogle Scholar
  8. de Szoeke SP, Xie S-P (2010) The tropical eastern Pacific seasonal cycle: assessment of errors and mechanisms in IPCC AR4 coupled ocean-atmosphere general circulation models*. J Clim 21:2573–2590. doi: 10.1175/2007JCLI1975.1 CrossRefGoogle Scholar
  9. Fedorov AV, Brierley CM, Emanuel K (2010) Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature 463:1066–1070. doi: 10.1038/nature08831 CrossRefGoogle Scholar
  10. Fedorov AV, Burls NJ, Lawrence KT, Peterson LC (2015) Tightly linked zonal and meridional sea surface temperature gradients over the past five million years. Nat Geosci 8:975–980. doi: 10.1038/ngeo2577 CrossRefGoogle Scholar
  11. Furue R, Jia Y, McCreary JP et al (2015) Impacts of regional mixing on the temperature structure of the equatorial Pacific Ocean. Part 1: vertically uniform vertical diffusion. Ocean Model 91:91–111. doi: 10.1016/j.ocemod.2014.10.002 CrossRefGoogle Scholar
  12. Gordon CT, Rosati A, Gudgel R (2000) Tropical sensitivity of a coupled model to specified ISCCP low clouds. J Clim 13:2239–2260. doi: 10.1175/1520-0442(2000)013<2239:TSOACM>2.0.CO;2 CrossRefGoogle Scholar
  13. Gu D, Philander SGH (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275:805–807. doi: 10.1126/science.275.5301.805 CrossRefGoogle Scholar
  14. Guilyardi E, Braconnot P, Jin F-F et al (2010) Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J Clim 22:5698–5718. doi: 10.1175/2009JCLI2815.1 CrossRefGoogle Scholar
  15. Ham Y-G, Kug J-S (2012) How well do current climate models simulate two types of El Nino? Clim Dyn 39:383–398. doi: 10.1007/s00382-011-1157-3 CrossRefGoogle Scholar
  16. Ham Y-G, Kug J-S (2015) Improvement of ENSO simulation based on intermodel diversity. J Clim 28:998–1015. doi: 10.1175/JCLI-D-14-00376.1 CrossRefGoogle Scholar
  17. Ham Y-G, Schubert S, Vikhliaev Y, Suarez MJ (2014) An assessment of the ENSO forecast skill of GEOS-5 system. Clim Dyn 43:2415–2430. doi: 10.1007/s00382-014-2063-2 CrossRefGoogle Scholar
  18. Harper S (2000) Thermocline ventilation and pathways of tropical–subtropical water mass exchange. Tellus 52A:330–345CrossRefGoogle Scholar
  19. Hirota N, Takayabu YN (2013) Reproducibility of precipitation distribution over the tropical oceans in CMIP5 multi-climate models compared to CMIP3. Clim Dyn 41:2909–2920. doi: 10.1007/s00382-013-1839-0 CrossRefGoogle Scholar
  20. Hourdin F, Foujols M-A, Codron F et al (2013) Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Clim Dyn 40:2167–2192. doi: 10.1007/s00382-012-1411-3 CrossRefGoogle Scholar
  21. Hwang YT, Frierson DMW (2013) Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc Natl Acad Sci 110:4935–4940. doi: 10.1073/pnas.1213302110 CrossRefGoogle Scholar
  22. Izumo T, Picaut J, Blanke B (2002) Tropical pathways, equatorial undercurrent variability and the 1998 La Niña. Geophys Res Lett 29:37–1–37–4. doi: 10.1029/2002GL015073
  23. Jansen M, Ferrari R (2009) Impact of the latitudinal distribution of tropical cyclones on ocean heat transport. Geophys Res Lett 36:L06604. doi: 10.1029/2008GL036796 CrossRefGoogle Scholar
  24. Jia Y, Furue R, McCreary JP Jr (2015) Impacts of regional mixing on the temperature structure of the equatorial Pacific Ocean. Part 2: depth-dependent vertical diffusion. Ocean Model 91:112–127. doi: 10.1016/j.ocemod.2015.02.007 CrossRefGoogle Scholar
  25. Johnson NC (2013) How many ENSO flavors can we distinguish?*. J Clim 26:4816–4827. doi: 10.1175/JCLI-D-12-00649.1 CrossRefGoogle Scholar
  26. Kang SM, Held IM, Frierson DMW, Zhao M (2008) The response of the ITCZ to extratropical thermal forcing: idealized slab-ocean experiments with a GCM. J Clim 21:3521–3532. doi: 10.1175/2007JCLI2146.1 CrossRefGoogle Scholar
  27. Kato S, Loeb NG, Rose FG et al (2013) Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J Clim 26:2719–2740. doi: 10.1175/JCLI-D-12-00436.1 CrossRefGoogle Scholar
  28. Kay JE, Wall C, Yettella V, Medeiros B, Hannay C, Caldwell P et al (2016) Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). J Clim 29(12):4617–4636. doi: 10.1175/JCLI-D-15-0358.1 CrossRefGoogle Scholar
  29. Large WG, Yeager SG (2009) The global climatology of an interannually varying air–sea flux data set. Clim Dyn 33:341–364. doi: 10.1007/s00382-008-0441-3 CrossRefGoogle Scholar
  30. Li G, Xie S-P (2012) Origins of tropical-wide SST biases in CMIP multi-model ensembles. Geophys Res Lett 39:L22703. doi: 10.1029/2012GL053777 Google Scholar
  31. Li G, Xie S-P (2014) Tropical biases in CMIP5 multimodel ensemble: the excessive equatorial Pacific cold tongue and double ITCZ problems*. J Clim 27:1765–1780. doi: 10.1175/JCLI-D-13-00337.1 CrossRefGoogle Scholar
  32. Li G, Du Y, Xu H, Ren B (2015) An intermodel approach to identify the source of excessive equatorial Pacific cold tongue in CMIP5 models and uncertainty in observational datasets. J Clim 28:7630–7640. doi: 10.1175/JCLI-D-15-0168.1 CrossRefGoogle Scholar
  33. Lin J-L (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean-atmosphere feedback analysis. J Clim 20:4497–4525. doi: 10.1175/JCLI4272.1 CrossRefGoogle Scholar
  34. Liu Z, Huang B (1997) A coupled theory of tropical climatology: warm pool, cold tongue, and walker circulation. J Clim 10:1662–1679. doi: 10.1175/1520-0442(1997)010<1662:ACTOTC>2.0.CO;2 CrossRefGoogle Scholar
  35. Liu Z, Yang H (2003) Extratropical control of tropical climate, the atmospheric bridge and oceanic tunnel. Geophys Res Lett. doi: 10.1029/2002GL016492 Google Scholar
  36. Locarnini AR, Mishonov AV et al (2014) World Ocean Atlas 2013, vol 1: temperature. NOAA Atlas NESDISGoogle Scholar
  37. Loeb NG, Wielicki BA, Doelling DR et al (2009) Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J Clim 22:748–766. doi: 10.1175/2008JCLI2637.1 CrossRefGoogle Scholar
  38. Ma C-C, Mechoso CR, Robertson AW, Arakawa A (1996) Peruvian stratus clouds and the tropical Pacific circulation: a coupled ocean-atmosphere GCM study. J Clim 9:1635–1645. doi: 10.1175/1520-0442(1996)009<1635:PSCATT>2.0.CO;2 CrossRefGoogle Scholar
  39. Manucharyan GE, Fedorov AV (2014) Robust ENSO across a wide range of climates. J Clim 27:5836–5850. doi: 10.1175/JCLI-D-13-00759.1 CrossRefGoogle Scholar
  40. McCreary JP Jr, Lu P (1994) Interaction between the subtropical and equatorial ocean circulations: the subtropical cell. J Phys Oceanogr 24:466–497. doi: 10.1175/1520-0485(1994)024<0466:IBTSAE>2.0.CO;2 CrossRefGoogle Scholar
  41. Mechoso CR, Robertson AW, Barth N et al (1995) The seasonal cycle over the tropical Pacific in coupled ocean-atmosphere general circulation models. Mon Weather Rev 123:2825–2838. doi: 10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2 CrossRefGoogle Scholar
  42. Moum JN, Perlin A, Nash JD, McPhaden MJ (2013) Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing. Nature 500:64–67. doi: 10.1038/nature12363 CrossRefGoogle Scholar
  43. Pinker RT, Bentamy A, Katsaros KB et al (2014) Estimates of net heat fluxes over the Atlantic Ocean. J Geophys Res Oceans 119:410–427. doi: 10.1002/2013JC009386 CrossRefGoogle Scholar
  44. Rayner NA, Parker DE, Horton EB et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos (1984–2012) 108:4407. doi: 10.1029/2002JD002670
  45. Rossow WB, Walker AW, Beusche DE, Roiter MD (1996) International satellite cloud climatology project (ISCCP): documentation of new cloud datasets. World Meteorological OrganizationGoogle Scholar
  46. Shen ML, Keenlyside N, Selten F et al (2016) Dynamically combining climate models to “supermodel” the tropical Pacific. Geophys Res Lett 43:359–366. doi: 10.1002/2015GL066562 CrossRefGoogle Scholar
  47. Shields CA, Bailey DA, Danabasoglu G et al (2012) The low-resolution CCSM4. J Clim 25:3993–4014. doi: 10.1175/JCLI-D-11-00260.1 CrossRefGoogle Scholar
  48. Song X, Zhang GJ (2010) Convection parameterization, tropical Pacific double ITCZ, and upper-ocean biases in the NCAR CCSM3. Part I: climatology and atmospheric feedback. J Clim 22:4299–4315. doi: 10.1175/2009JCLI2642.1 CrossRefGoogle Scholar
  49. Sun D-Z, Fasullo J, Zhang T, Roubicek A (2003) On the radiative and dynamical feedbacks over the equatorial Pacific cold tongue. J Clim 16:2425–2432. doi: 10.1175/2786.1 CrossRefGoogle Scholar
  50. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  51. Vannière B, Guilyardi E, Toniazzo T et al (2014) A systematic approach to identify the sources of tropical SST errors in coupled models using the adjustment of initialised experiments. Clim Dyn 43:2261–2282. doi: 10.1007/s00382-014-2051-6 CrossRefGoogle Scholar
  52. Wang C, Zhang L, Lee S-K et al (2014) A global perspective on CMIP5 climate model biases. Nat Clim Change 4:201–205. doi: 10.1038/nclimate2118 CrossRefGoogle Scholar
  53. Yu J-Y, Mechoso CR (1999) Links between annual variations of peruvian stratocumulus clouds and of SST in the eastern equatorial Pacific. J Clim 12:3305–3318. doi: 10.1175/1520-0442(1999)012<3305:LBAVOP>2.0.CO;2 CrossRefGoogle Scholar
  54. Yu L, Jin X, Weller RA (2008) Multidecade global flux datasets from the objectively analyzed air–sea fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OAFlux project technical report. OA-2008-01, 64ppGoogle Scholar
  55. Zhang GJ, Song X (2010) Convection parameterization, tropical Pacific double ITCZ, and upper-ocean biases in the NCAR CCSM3. Part II: coupled feedback and the role of ocean heat transport. J Clim 23:800–812. doi: 10.1175/2009JCLI3109.1 CrossRefGoogle Scholar
  56. Zheng Y, Shinoda T, Lin J-L, Kiladis GN (2011) Sea surface temperature biases under the stratus cloud deck in the southeast Pacific ocean in 19 IPCC AR4 coupled general circulation models. J Clim 24:4139–4164. doi: 10.1175/2011JCLI4172.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Natalie J. Burls
    • 1
    • 2
  • Leslie Muir
    • 2
  • Emmanuel M. Vincent
    • 2
    • 3
  • Alexey Fedorov
    • 2
  1. 1.Department of Atmospheric, Oceanic, and Earth Sciences, Center for Ocean-Land-Atmosphere StudiesGeorge Mason UniversityFairfaxUSA
  2. 2.Department of Geology and GeophysicsYale UniversityNew HavenUSA
  3. 3.Sierra Nevada Research InstituteUniversity of CaliforniaMercedUSA

Personalised recommendations