Projections of 21st century climate of the Columbia River Basin

Abstract

Simulations from 35 global climate models (GCMs) in the Coupled Model Intercomparison Project Phase 5 provide projections of 21st century climate in the Columbia River Basin under scenarios of anthropogenic activity given by Representative Concentration Pathways (RCP4.5 and RCP8.5). The multi-model ensemble 30-year mean annual temperature increases by 2.8 °C (5.0 °C) by late 21st century under RCP4.5 (RCP8.5) over the 1979–1990 baseline, with 18% (24%) more warming in summer. By late 21st century, annual precipitation increases by 5% (8%), with an 8% (14%) winter increase and a 4% (10%) summer decrease, but because some models project changes of opposite sign, confidence in these sign changes is lower than those for temperature. Four questions about temperature and precipitation changes were addressed: (1) How and why do climate projections vary seasonally? (2) Is interannual variability in seasonal temperature and precipitation projected to change? (3) What explains the large inter-model spread in the projections? (4) Do projected changes in climate depend on model skill? Changes in precipitation and temperature vary seasonally as a result of changes in large-scale circulation and regional surface energy budget, respectively. Interannual temperature variability decreases slightly during the cool seasons and increases in summer, while interannual precipitation variability increases in all seasons. The magnitude of regional warming is linked to models’ global climate sensitivity, whereas internal variability dominates the inter-model spread of precipitation changes. Lastly, GCMs that better reproduce historical climate tend to project greater warming and larger precipitation increases, though these results depend on the evaluation method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abatzoglou JT, Rupp DE, Mote PW (2014) Seasonal climate variability and change in the Pacific northwest of the United States. J Clim 27:2125–2142. doi:10.1175/JCLI-D-13-00218.1

    Article  Google Scholar 

  2. Ahmadalipour A, Rana A, Moradkhani H, Sharma A (2015) Multi-criteria evaluation of CMIP5 GCMs for climate change impact analysis. Theor Appl Climatol. doi:10.1007/s00704-015-1695-4

    Google Scholar 

  3. Bi D et al (2013) The ACCESS coupled model: description, control climate and evaluation. Aust Meteorol Oceanogr J 63:41–64

    Article  Google Scholar 

  4. Brekke LD, Dettinger MD, Maurer EP, Anderson M (2008) Significance of model credibility in estimating climate projection distributions for regional hydroclimatological risk assessments. Clim Change 89:371–394. doi:10.1007/s10584-007-9388-3

    Article  Google Scholar 

  5. Cao HX, Mitchell JFB, Lavery JR (1992) Simulated diurnal range and variability of surface temperature in a global climate model for present and doubled CO2 climates. J Clim 5:920–943

    Article  Google Scholar 

  6. Chang EKM (2013) CMIP5 projection of significant reduction in extratropical cyclone activity over North America. J Clim 26:9903–9922. doi:10.1175/JCLI-D-13-00209.1

    Article  Google Scholar 

  7. Chang EKM, Zheng C, Lanigan P, Yau AMW, Neelin JD (2015) Significant modulation of variability and projected change in California winter precipitation by extratropical cyclone activity. Geophys Res Lett 42:5983–5991. doi:10.1002/2015GL064424

    Article  Google Scholar 

  8. Christensen JH, Boberg F (2012) Temperature dependent climate projection deficiencies in CMIP5 models. Geophys Res Lett 39:L24705. doi:10.1029/2012GL053650

    Article  Google Scholar 

  9. Christensen JH, Kjellström E, Giorgi F, Lenderink G, Rummukainen M (2010) Weight assignment in regional climate models. Clim Res 44:179–194. doi:10.3354/cr00916

    Article  Google Scholar 

  10. Cosens B (2010) Transboundary river governance in the face of uncertainty: resilience theory and the Columbia river treaty. J Land Resour Environ Law 30:229–265

    Google Scholar 

  11. Dettinger MD (2013) Atmospheric rivers as drought busters on the US West Coast. J Hydrometeorol 14:1721–1732. doi:10.1175/JHM-D-13-02.1

    Article  Google Scholar 

  12. Dirmeyer PA, Jin Y, Singh B, Yan X (2013) Evolving land–atmosphere interactions over North America from CMIP5 simulations. J Clim 26:7313–7327. doi:10.1175/JCLI-D-12-00454.1

    Article  Google Scholar 

  13. Ficklin DL, Abatzoglou JT, Robeson SM, Dufficy A (2016) The influence of climate model biases on projections of aridity and drought. J Clim 29:1269–1285. doi:10.1175/JCLI-D-15-0439.1

    Article  Google Scholar 

  14. Fischer EM, Schär C (2009) Future changes in daily summer temperature variability: driving processes and role for temperature extremes. Clim Dyn 33:917–935. doi:10.1007/s00382-008-0473-8

    Article  Google Scholar 

  15. Fischer EM, Rajczak J, Schär C (2012) Changes in European summer temperature variability revisited. Geophys Res Lett 39:L19702. doi:10.1029/2012GL052730

    Google Scholar 

  16. Flato G et al (2013) Evaluation of climate models. In: Stocker TF et al (eds) Climate change 2013: The physical science basis. Contribution of Working Group 1 to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 741–866

    Google Scholar 

  17. Gao Y, Lu J, Leung LR, Yang Q, Hagos S, Qian Y (2015) Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. Geophys Res Lett 42:7179–7186. doi:10.1002/grl.v42.17

    Article  Google Scholar 

  18. Giorgi F, Mearns L (2002) Calculation of average, uncertainty range and reliability of regional climate changes from AOGCM simulations via the ‘reliability ensemble averaging’ (REA) method. J Clim 15:1141–1158

    Article  Google Scholar 

  19. Gregory JM, Mitchell JFB (1995) Simulation of daily variability of surface temperature and precipitation over Europe in the current and 2 × CO2 climates using the UKMO climate model. QJR Meteorol Soc 121:1451–1476. doi:10.1002/qj.49712152611

    Google Scholar 

  20. Hall A, Qu X (2006) Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys Res Lett 33:L03502. doi:10.1029/2005GL025127

    Google Scholar 

  21. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1107. doi:10.1175/2009BAMS2607.1

    Article  Google Scholar 

  22. Hawkins E, Sutton R (2011) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn 37:407–418. doi:10.1007/s00382-010-0810-6

    Article  Google Scholar 

  23. Holmes CR, Woollings T, Hawkins E, de Vries H (2016) Robust future changes in temperature variability under greenhouse gas forcing and the relationship with thermal advection. J Clim 29:2221–2236. doi:10.1175/JCLI-D-14-00735.1

    Article  Google Scholar 

  24. Jin M, Liang S (2006) An improved land surface emissivity parameter for land surface models using global remote sensing observations. J Clim 19:2867–2881. doi:10.1175/JCLI3720.1

    Article  Google Scholar 

  25. Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Change 119:345–357. doi:10.1007/s10584-013-0705-8

    Article  Google Scholar 

  26. Lenderink G, Van Ulden A, van den Hurk B, van Meijgaard E (2007) Summertime inter-annual temperature variability in an ensemble of regional model simulations: analysis of the surface energy budget. Clim Change 81:233–247. doi:10.1007/s10584-006-9229-9

    Article  Google Scholar 

  27. Luce CH, Abatzoglou JT, Holden ZA (2013) The missing mountain water: slower westerlies decrease orographic enhancement in the Pacific Northwest USA. Science 342:1360–1364. doi:10.1126/science.1242335

    Article  Google Scholar 

  28. Maloney E et al (2014) North American climate in CMIP5 experiments: part III: assessment of 21st century projections. J Clim. doi:10.1175/JCLI-D-13-00273.1

    Google Scholar 

  29. McKinney M, Baker L, Buvel AM, Fischer A, Foster D, Paulu C (2010) Managing transboundary natural resources: an assessment of the need to revise and update the Columbia River Treaty. Hastings West Northwest J Environ Law Policy 16:307–350

    Google Scholar 

  30. Meinshausen M et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241. doi:10.1007/s10584-011-0156-z

    Article  Google Scholar 

  31. Mock CJ (1996) Climatic controls and spatial variations of precipitation in the western United States. J Clim 9:1111–1125

    Article  Google Scholar 

  32. Mote PW, Salathé EP Jr (2010) Future climate in the Pacific Northwest. Clim Change 102:29–50. doi:10.1007/s10584-010-9848-z

    Article  Google Scholar 

  33. Mote PW, Brekke L, Duffy PB, Maurer E (2011) Guidelines for constructing climate scenarios. EOS Trans AGU 92:257. doi:10.1029/2011EO310001

    Article  Google Scholar 

  34. Mote PW, Abatzolgou JT, Kunkel K (2013) Climate variability and change in the past and future. In: Dalton MM, Mote P, Snover AK (eds) Climate change in the Northwest: implications for our landscapes, waters, and communities. Island Press, Washington, pp 25–40

    Google Scholar 

  35. Neelin JD, Langenbrunner B, Meyerson JE, Hall A, Berg N (2013) California winter precipitation change under global warming in the coupled model intercomparison project 5 ensemble. J Clim 26:6238–6256. doi:10.1175/JCLI-D-12-00514.1

    Article  Google Scholar 

  36. Osborn RP (2012) Climate change and the Columbia River Treaty. Wash J Environ Law Policy 2:75–123

    Google Scholar 

  37. Payne AE, Magnusdottir G (2015) An evaluation of atmospheric rivers over the North Pacific in CMIP5 and their response to warming under RCP 8.5. J Geophys Res Atmos. doi:10.1002/jgrd.v120.21

    Google Scholar 

  38. Pitman AJ, Perkins SE (2008) Regional projections of future seasonal and annual changes in rainfall and temperature over Australia based in skill-selected AR4 models. Earth Interact 12:1–50. doi:10.1175/2008EI260.1

    Article  Google Scholar 

  39. Polade SD, Pierce DW, Cayan DR, Gershunov A, Dettinger MD (2014) The key role of dry days in changing regional climate and precipitation regimes. Sci Rep 4:4364. doi:10.1038/srep04364

    Article  Google Scholar 

  40. Räisänen J (2002) CO2-induced changes in interannual temperature and precipitation variability in 19 CMIP2 experiments. J Clim 15:2395–2411

    Article  Google Scholar 

  41. Rana A, Moradkhani H (2015) Spatial, temporal and frequency based climate change assessment in Columbia River Basin using multi downscaled-scenarios. Clim Dyn. doi:10.1007/s00382-015-2857-x

    Google Scholar 

  42. Rind D, Goldberg R, Ruedy R (1989) Change in climate variability in the 21st century. Clim Change 14:5–37

    Article  Google Scholar 

  43. Rupp DE, Abatzoglou JT, Hegewisch KC, Mote PW (2013) Evaluation of CMIP5 20th century climate simulations for the Pacific Northwest USA. J Geophys Res Atmos 118:10884–10906. doi:10.1002/jgrd.50843

    Article  Google Scholar 

  44. Rupp DE, Li S, Mote PW, Shell KM, Massey N, Sparrow SN, Wallom DCH, Allen MR (2016) Seasonal spatial patterns of projected anthropogenic warming in complex terrain: a modeling study of the western US. Clim Dyn. doi:10.1007/s00382-106-3200-x

    Google Scholar 

  45. Seager R, Naik N, Vecchi GA (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim 23:4651–4668. doi:10.1175/2010JCLI3655.1

    Article  Google Scholar 

  46. Seager R, Goddard L, Nakamura J, Henderson N, Lee DE (2014a) Dynamical causes of the 2010/11 Texas-Northern Mexico drought. J Hydrometeor 15:39–68. doi:10.1175/JHM-D-13-024.1

    Article  Google Scholar 

  47. Seager R, Neelin D, Simpson I, Liu H, Henderson N, Shaw T, Kushnir Y, Ting M, Cook B (2014b) Dynamical and thermodynamical causes of large-scale changes in the hydrological cycle over North America in response to global warming. J Clim 27:7921–7948. doi:10.1175/JCLI-D-14-00153.1

    Article  Google Scholar 

  48. Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land–atmosphere coupling and climate change in Europe. Nature 443:205–209. doi:10.1038/nature05095

    Article  Google Scholar 

  49. Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493. doi:10.1002/jgrd.50188

    Article  Google Scholar 

  50. Simpson IR, Seager R, Ting M, Shaw TA (2015) Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate. Nat Clim Change 6:65–70. doi:10.1038/nclimate2783

    Google Scholar 

  51. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D11-97300094.1

    Article  Google Scholar 

  52. Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Phil Trans R Soc A 365:2053–2075. doi:10.1098/rsta.2007.2076

    Article  Google Scholar 

  53. Vano JA, Kim JB, Rupp DE, Mote PW (2015) Selecting climate change scenarios using impact-relevant sensitivities. Geophys Res Lett 42:5516–5525. doi:10.1002/2015GL063208

    Article  Google Scholar 

  54. Vidale PL, Lüthi D, Wegmann R, Schär C (2007) European summer climate variability in a heterogeneous multi-model ensemble. Clim Change 81:209–232. doi:10.1007/s10584-006-9218-z

    Article  Google Scholar 

  55. Warner MD, Mass CF, Salathé EP Jr (2015) Changes in winter atmospheric rivers along the North American West Coast in CMIP5 climate models. J Hydrometeorol 16:118–128. doi:10.1175/JHM-D-14-0080.1

    Article  Google Scholar 

  56. Weigel A, Knutti R, Liniger MA, Appenzeller C (2010) Risks of model weighting in multimodel climate projections. J Clim 23:4175–4191. doi:10.1175/2010JCLI3594.1

    Article  Google Scholar 

  57. Yin D, Roderick ML, Leech G, Sun F, Huang Y (2014) The contribution of reduction in evaporative cooling to higher surface air temperatures during drought. Geophys Res Lett 41:7891–7897. doi:10.1002/2014GL062039

    Article  Google Scholar 

  58. Zwiers FW, Kharin VV (1998) Changes in the extremes of the climate simulated by CCC GCM2 under CO2 doubling. J Clim 11:2200–2222

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported the U.S. Department of Energy-Bonneville Power Administration (cooperative agreement 00063182) and the U.S. Department of Agriculture, National Institute of Food and Agriculture (USDA-NIFA), via the Regional Approaches to Climate Change—Pacific Northwest Agriculture (REACCH PNA, USDA-NIFA grant 2011068002-30191) project. We thank Sihan Li for useful discussions, Darrin Sharp and Katherine Hegewisch for assistance with data processing, and two anonymous reviewers for their helpful comments. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David E. Rupp.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 350 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rupp, D.E., Abatzoglou, J.T. & Mote, P.W. Projections of 21st century climate of the Columbia River Basin. Clim Dyn 49, 1783–1799 (2017). https://doi.org/10.1007/s00382-016-3418-7

Download citation

Keywords

  • CMIP5
  • Projections
  • RCP4.5
  • RCP8.5
  • Columbia River Basin
  • Variability
  • Fidelity
  • Variance partition