Climate Dynamics

, Volume 49, Issue 4, pp 1365–1377 | Cite as

Impact of the quasi-biennial oscillation on predictability of the Madden–Julian oscillation

  • Andrew G. Marshall
  • Harry H. Hendon
  • Seok-Woo Son
  • Yuna Lim


The Madden–Julian oscillation (MJO) during boreal winter is observed to be stronger during the easterly phase of the quasi-biennial oscillation (QBO) than during the westerly phase, with the QBO zonal wind at 50 hPa leading enhanced MJO activity by about 1 month. Using 30 years of retrospective forecasts from the POAMA coupled model forecast system, we show that this strengthened MJO activity during the easterly QBO phase translates to improved prediction of the MJO and its convective anomalies across the tropical Indo-Pacific region by about 8 days lead time relative to that during westerly QBO phases. These improvements in forecast skill result not just from the fact that forecasts initialized with stronger MJO events, such as occurs during QBO easterly phases, have greater skill, but also from the more persistent behaviour of the MJO for a similar initial amplitude during QBO easterly phases as compared to QBO westerly phases. The QBO is thus an untapped source of subseasonal predictability that can provide a window of opportunity for improved prediction of global climate.


MJO Madden–Julian oscillation QBO Quasi-biennial oscillation Subseasonal Forecast Predictability Prediction Boreal winter 



All data for this paper is properly cited and referred to in the reference list. We thank James Risbey and Hanh Nguyen for reviewing earlier versions of this manuscript. SWS and YL’s works were funded by the Korea Meteorological Administration Research and Development Program under Grant KMIPA 2015-2094 and 2015-2100.


  1. Alves O, Wang G, Zhong A, Smith N, Tzeitkin F, Warren G, Schiller A, Godfrey S, Meyers G (2003) POAMA: Bureau of Meteorology operational coupled model forecast system. In: Proceedings of national drought forum, Brisbane, April 2003, pp 49–56. Available from DPI Publications, Department of Primary Industries, GPO Box 46, Brisbane, QLD 4001Google Scholar
  2. Baldwin MP, Gray LJ, Dunkerton TJ, Hamilton K, Haynes PH, Randel WJ, Holton JR, Alexander MJ, Hirota I, Horinouchi T, Jones DBA, Kinnersley JS, Marquardt C, Sato K, Takahashi M (2001) Quasi-biennial oscillation. Rev Geophys 39:179–229CrossRefGoogle Scholar
  3. Boer GJ, Hamilton K (2008) QBO influence on extratropical predictive skill. Clim Dyn 31:987–1000CrossRefGoogle Scholar
  4. Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009CrossRefGoogle Scholar
  5. Collimore CC, Martin DW, Hitchman MH, Huesmann A, Waliser DE (2003) On the relationship between the QBO and tropical deep convection. J Clim 16:2552–2568CrossRefGoogle Scholar
  6. Colman R, Deschamps L, Naughton M, Rikus L, Sulaiman A, Puri K, Roff G, Sun Z, Embury G (2005) BMRC atmospheric model (BAM) version3.0: comparison with mean climatology. BMRC research report no. 108, Bur Met, MelbourneGoogle Scholar
  7. Ebdon RA (1960) Notes on the wind flow at 50 mb in tropical and subtropical regions in January 1957 and in 1958. Q J R Meteorol Soc 86:540–542CrossRefGoogle Scholar
  8. Garfinkel CI, Hartmann DL (2011) The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models: part I—simplified dry GCMs. J Atmos Sci 68:1273–1289CrossRefGoogle Scholar
  9. Geller MA, Shen W, Zhang M, Tan W-W (1997) Calculations of the stratospheric quasi-biennial oscillation for time-varying wave forcing. J Atmos Sci 54:883–894CrossRefGoogle Scholar
  10. Hamilton K (1984) Mean wind evolution through the quasi-biennial cycle in the tropical lower stratosphere. J Atmos Sci 41:2113–2125CrossRefGoogle Scholar
  11. Hendon HH, Liebmann B (1990) The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. J Atmos Sci 47:2909–2923CrossRefGoogle Scholar
  12. Holton JR, Lindzen RS (1972) An updated theory for the quasi-biennial cycle of the tropical stratosphere. J Atmos Sci 29:1076–1080CrossRefGoogle Scholar
  13. Holton JR, Tan H-C (1980) The influence of the equatorial quasibiennial oscillation on the global circulation at 50 mb. J Atmos Sci 37:2200–2208CrossRefGoogle Scholar
  14. Hudson D, Alves O, Hendon HH, Wang G (2011) The impact of atmospheric initialisation on seasonal prediction of tropical Pacific SST. Clim Dyn 36:1155–1171CrossRefGoogle Scholar
  15. Hudson D, Marshall A, Yin Y, Alves O, Hendon H (2013) Improving intraseasonal prediction with a new ensemble generation strategy. Mon Weather Rev 141:4429–4449CrossRefGoogle Scholar
  16. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  17. Kumar V, Dhaka SK, Reddy KK, Gupta A, Surendra Prasad SB, Panwar V, Singh N, Ho S-P, Takahashi M (2014) Impact of quasi-biennial oscillation on the inter-annual variability of the tropopause height and temperature in the tropics: a study using COSMIC/FORMOSAT-3 observations. Atmos Res 139:62–70CrossRefGoogle Scholar
  18. Liebmann B, Smith CA (1996) Description of a complete (Interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277Google Scholar
  19. Liess S, Geller MA (2012) On the relationship between QBO and distribution of tropical deep convection. J Geophys Res 117:D3. doi: 10.1029/2011JD016317 CrossRefGoogle Scholar
  20. Lin H, Brunet G, Derome J (2008) Forecast skill of the Madden–Julian oscillation in two Canadian atmospheric models. Mon Weather Rev 136:4130–4149CrossRefGoogle Scholar
  21. Lindzen RS, Holton JR (1968) A theory of the quasi-biennial oscillation. J Atmos Sci 25:1095–1107CrossRefGoogle Scholar
  22. Madden RA, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708CrossRefGoogle Scholar
  23. Maharaj EA, Wheeler MC (2005) Forecasting an index of the Madden-oscillation. Int J Clim 25:1611–1618CrossRefGoogle Scholar
  24. Mapes BE (2000) Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J Atmos Sci 57:1515–1535CrossRefGoogle Scholar
  25. Mapes BE, Tulich S, Lin JL, Zuidema P (2006) The mesoscale convection life cycle: building block or prototype for large scale tropical waves? Dyn Atmos Oceans 42:3–29CrossRefGoogle Scholar
  26. Marshall AG, Scaife AA (2009) Impact of the QBO on surface winter climate. J Geophys Res 114:D18110. doi: 10.1029/2009JD011737 CrossRefGoogle Scholar
  27. Marshall AG, Hudson D, Wheeler MC, Hendon HH, Alves O (2011) Assessing the simulation and prediction of rainfall associated with the MJO in the POAMA seasonal forecast system. Clim Dyn 37:2129–2141CrossRefGoogle Scholar
  28. Marshall AG, Hudson D, Wheeler MC, Hendon HH, Alves O (2012) Simulation and prediction of the MJO and its teleconnections using POAMA. CAWCR technical report no 056:113–116Google Scholar
  29. Marshall AG, Hendon HH, Durrant TH, Hemer MA (2015) Madden Julian Oscillation impacts on global ocean surface waves. Ocean Model 96:136–147CrossRefGoogle Scholar
  30. Moncrieff MW, Waliser DE, Miller MJ, Shapiro ME, Asrar G, Caughey J (2012) Multiscale convective organization and the YOTC virtual global field Campaign. Bull Am Meteorol Soc 93:1171–1187CrossRefGoogle Scholar
  31. Neena JM, Lee JY, Waliser D, Wang B, Jiang X (2014) Predictability of the Madden–Julian oscillation in the intraseasonal variability hindcast experiment (ISVHE). J Clim 27:4531–4543CrossRefGoogle Scholar
  32. Nie J, Sobel AH (2015) Responses of deep tropical convection to the QBO: cloud-resolving simulations. J Atmos Sci 72:3625–3638CrossRefGoogle Scholar
  33. Rashid H, Hendon HH, Wheeler M, Alves O (2011) Prediction of the Madden–Julian oscillation with the POAMA dynamical seasonal prediction system. Clim Dyn 36:649–661CrossRefGoogle Scholar
  34. Reed RJ, Campbell WJ, Rasmussen LA, Rogers RG (1961) Evidence of a downward propagating annual wind reversal in the equatorial stratosphere. J Geophys Res 66:813–818CrossRefGoogle Scholar
  35. Rowell DP (1998) Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations. J Clim 11:109–120CrossRefGoogle Scholar
  36. Salby ML, Hendon HH (1994) Intraseasonal behaviour of clouds, temperature, and motion in the tropics. J Atmos Sci 51:2207–2224CrossRefGoogle Scholar
  37. Schiller A, Godfrey JS, McIntosh P, Meyers G (1997) A global ocean general circulation model climate variability studies. CSIRO Marine research report No 227Google Scholar
  38. Seo J, Choi W, Youn D, Park D-SR, Kim JY (2013) Relationship between the stratospheric quasi-biennial oscillation and the spring rainfall in the western North Pacific. Geophys Res Lett 40:5949–5953CrossRefGoogle Scholar
  39. Shi L, Alves O, Hendon HH, Wang G, Anderson D (2009) The role of stochastic forcing in ensemble forecasts of the 1997/98 El Nino. J Clim 22:2526–2540CrossRefGoogle Scholar
  40. Stockdale TN (1997) Coupled ocean-atmosphere forecasts in the presence of climate drift. Mon Weather Rev 125:809–818CrossRefGoogle Scholar
  41. Student (1908) The probable error of a mean. Biometrika 6:1–25CrossRefGoogle Scholar
  42. Taguchi M (2010) Observed connection of the stratospheric quasi-biennial oscillation with El Niño-Southern oscillation in radiosonde data. J Geophys Res 115:D18120. doi: 10.1029/2010JD014325 CrossRefGoogle Scholar
  43. Thompson DWJ, Baldwin MP, Wallace JM (2002) Stratospheric connection to Northern Hemisphere wintertime weather: implications for prediction. J Clim 15:1421–1428CrossRefGoogle Scholar
  44. Virts KS, Wallace JM (2014) Observations of temperature, wind, cirrus, and trace gases in the tropical tropopause transition layer during the MJO. J Atmos Sci 71:1143–1157CrossRefGoogle Scholar
  45. Vitart F (2009) Impact of the Madden–Julian oscillation on tropical storms and risk of landfall in the ECMWF forecast system. Geophys Res Lett 36:L15802. doi: 10.1029/2009GL039089 CrossRefGoogle Scholar
  46. Vitart F, Molteni F (2010) Simulation of the Madden–Julian oscillation and its teleconnections in the ECMWF forecast system. Q J R Meteorol Soc 136:842–855CrossRefGoogle Scholar
  47. Vitart F, Leroy A, Wheeler MC (2010) A comparison of dynamical and statistical predictions of weekly tropical cyclone activity in the Southern Hemisphere. Mon Weather Rev 138:3671–3682CrossRefGoogle Scholar
  48. Waliser DE, Weickmann K, Dole R, Schubert S, Alves O, Jones C, Newman M, Pan H-L, Roubicek A, Saha S, Smith C, Van den Dool H, Vitart F, Wheeler M, Whitaker J (2006) The experimental MJO prediction project. Bull Am Meteorol Soc 87:425–431CrossRefGoogle Scholar
  49. Wheeler MC, Hendon HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932CrossRefGoogle Scholar
  50. Yin Y, Alves O, Oke PR (2011) An ensemble ocean data assimilation system for seasonal prediction. Mon Weather Rev 139:786–808CrossRefGoogle Scholar
  51. Yoo C, Son S-W (2016) Modulation of the boreal wintertime Madden–Julian oscillation by the stratospheric quasi-biennial oscillation. Geophys Res Lett. doi: 10.1002/2016GL067762 Google Scholar
  52. Zhang C (2013) Madden–Julian oscillation: bridging weather and climate. Bull Am Meteorol Soc 94:1849–1870CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Andrew G. Marshall
    • 1
  • Harry H. Hendon
    • 2
    • 3
  • Seok-Woo Son
    • 4
  • Yuna Lim
    • 4
  1. 1.Bureau of MeteorologyHobartAustralia
  2. 2.Bureau of MeteorologyMelbourneAustralia
  3. 3.Atmosphere and Ocean Research InstituteUniversity of TokyoKashiwanohaJapan
  4. 4.School of Earth and Environmental SciencesSeoul National UniversitySeoulSouth Korea

Personalised recommendations