Assessment of sea ice-atmosphere links in CMIP5 models

Abstract

The Arctic is currently undergoing drastic changes in climate, largely thought to be due to so-called ‘Arctic amplification’, whereby local feedbacks enhance global warming. Recently, a number of observational and modelling studies have questioned what the implications of this change in Arctic sea ice extent might be for weather in Northern Hemisphere midlatitudes, and in particular whether recent extremely cold winters such as 2009/10 might be consistent with an influence from observed Arctic sea ice decline. However, the proposed mechanisms for these links have not been consistently demonstrated. In a uniquely comprehensive cross-season and cross-model study, we show that the CMIP5 models provide no support for a relationship between declining Arctic sea ice and a negative NAM, or between declining Barents–Kara sea ice and cold European temperatures. The lack of evidence for the proposed links is consistent with studies that report a low signal-to-noise ratio in these relationships. These results imply that, whilst links may exist between declining sea ice and extreme cold weather events in the Northern Hemisphere, the CMIP5 model experiments do not show this to be a leading order effect in the long-term. We argue that this is likely due to a combination of the limitations of the CMIP5 models and an indication of other important long-term influences on Northern Hemisphere climate.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. 1.

    More robust to outliers than the standard Pearson’s correlation, detects monotonic relations, see e.g. Press et al. (2007).

References

  1. Ayarzagüena B, Screen JA (2016) Taking the chill off: future arctic sea-ice loss reduces severity of cold air outbreaks in midlatitudes. Geophys Res Lett. doi:10.1002/2016GL068092

    Google Scholar 

  2. Bader J, Mesquita MD, Hodges KI, Keenlyside N, Østerhus S, Miles M (2011) A review on northern hemisphere sea-ice, storminess and the north atlantic oscillation: observations and projected changes. Atmos Res 101(4):809–834. doi:10.1016/j.atmosres.2011.04.007. http://linkinghub.elsevier.com/retrieve/pii/S0169809511001001

  3. Barnes EA (2013) Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys Res Lett. doi:10.1002/grl.50880

    Google Scholar 

  4. Barnes EA, Polvani LM (2015) CMIP5 projections of Arctic amplification, of the North American/North Atlantic circulation, and of their relationship. J Clim. doi:10.1175/JCLI-D-14-00589.1

    Google Scholar 

  5. Barnes EA, Screen JA (2015) The impact of Arctic warming on the midlatitude jet-stream: can it? Has it? Will it? Wiley Interdiscip Rev Clim Change 6(3):277–286. doi:10.1002/wcc.337

    Article  Google Scholar 

  6. Beranová R, Kyselý J (2012) Relationships between the North Atlantic Oscillation index and temperatures in Europe in global climate models. Stud Geophys et Geod 57(1):138–153. doi:10.1007/s11200-012-0824-0

    Article  Google Scholar 

  7. Bintanja R, van der Linden EC (2013) The changing seasonal climate in the Arctic. Sci Rep 3:1556. doi:10.1038/srep01556

    Article  Google Scholar 

  8. Charlton-Perez AJ, Baldwin MP, Birner T, Black RX, Butler AH, Calvo N, Davis NA, Gerber EP, Gillett N, Hardiman S, Kim J, Krüger K, Lee YY, Manzini E, McDaniel BA, Polvani L, Reichler T, Shaw TA, Sigmond M, Son SW, Toohey M, Wilcox L, Yoden S, Christiansen B, Lott F, Shindell D, Yukimoto S, Watanabe S (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Geophys Res Atmos 118(6):2494–2505. doi:10.1002/jgrd.50125

    Article  Google Scholar 

  9. Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J, Jones J (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7(9):627–637. doi:10.1038/ngeo2234

    Article  Google Scholar 

  10. Davini P, Cagnazzo C, Anstey JA (2014) A blocking view of the stratosphere-troposphere coupling. J Geophys Res Atmos 119(19):11,100–11,115. doi:10.1002/2014JD021703

    Article  Google Scholar 

  11. Deser C, Tomas R, Alexander M, Lawrence D (2010) The seasonal atmospheric response to projected arctic sea ice loss in the late twenty-first century. J Clim 23(2):333–351. doi:10.1175/2009JCLI3053.1

    Article  Google Scholar 

  12. Deser C, Tomas RA, Sun L (2015) The role of ocean-atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. J Clim 28(6):2168–2186. doi:10.1175/JCLI-D-14-00325.1

    Article  Google Scholar 

  13. Eichelberger SJ (2002) A mechanistic model of the northern annular mode. J Geophys Res 107(D19):4388. doi:10.1029/2001JD001092

    Article  Google Scholar 

  14. Ferreira D, Marshall J, Bitz CM, Solomon S, Plumb A (2015) Antarctic ocean and sea ice response to ozone depletion: a two-time-scale problem. J Clim 28(3):1206–1226. doi:10.1175/JCLI-D-14-00313.1

    Article  Google Scholar 

  15. Frankignoul C, Sennéchael N, Cauchy P (2014) Observed atmospheric response to cold season sea ice variability in the Arctic. J Clim 27(3):1243–1254. doi:10.1175/JCLI-D-13-00189.1

    Article  Google Scholar 

  16. Gillett NP (2002) How linear is the Arctic oscillation response to greenhouse gases? J Geophys Res 107(D3):4022. doi:10.1029/2001JD000589

    Article  Google Scholar 

  17. Gillett NP, Fyfe JC (2013) Annular mode changes in the CMIP5 simulations. Geophys Res Lett 40(6):1189–1193. doi:10.1002/grl.50249

    Article  Google Scholar 

  18. Guirguis K, Gershunov A, Schwartz R, Bennett S (2011) Recent warm and cold daily winter temperature extremes in the Northern Hemisphere. Geophys Res Lett. doi:10.1029/2011GL048762

    Google Scholar 

  19. Hanna E, Fettweis X, Mernild SH, Cappelen J, Ribergaard MH, Shuman CA, Steffen K, Wood L, Mote TL (2013) Atmospheric and oceanic climate forcing of the exceptional Greenland ice sheet surface melt in summer 2012. Int J Climatol. doi:10.1002/joc.3743

    Google Scholar 

  20. Hanna E, Cropper TE, Jones PD, Scaife A, Allan R (2015) Recent seasonal asymmetric changes in the NAO (a marked summer decline and increased winter variability) and associated changes in the AO and Greenland blocking index. Int J Climatol 35(9):2540–2554. doi:10.1002/joc.4157

    Article  Google Scholar 

  21. Honda M, Inoue J, Yamane S (2009) Influence of low Arctic sea ice minima on anomalously cold Eurasian winters. Geophys Res Lett 36(8):L08,707. doi:10.1029/2008GL037079

    Article  Google Scholar 

  22. Hopsch S, Cohen J, Dethloff K (2012) Analysis of a link between fall Arctic sea ice concentration and atmospheric patterns in the following winter. Tellus A 64. doi:10.3402/tellusa.v64i0.18624. http://www.tellusa.net/index.php/tellusa/article/view/18624

  23. Hurrell JW (1995) Decadal trends in the north atlantic oscillation: regional temperatures and precipitation. Science (New York, NY) 269(5224):676–679. doi:10.1126/science.269.5224.676. http://www.ncbi.nlm.nih.gov/pubmed/17758812

  24. Inoue J, Hori ME, Takaya K (2012) The Role of Barents Sea Ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. J Clim 25(7):2561–2568. doi:10.1175/JCLI-D-11-00449.1

    Article  Google Scholar 

  25. Karpechko AY (2010) Uncertainties in future climate attributable to uncertainties in future northern annular mode trend. Geophys Res Lett. doi:10.1029/2010GL044717

    Google Scholar 

  26. Kim BM, Son SW, Min SK, Jeong JH, Kim SJ, Zhang X, Shim T, Yoon JH (2014) Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat Commun 5:4646. doi:10.1038/ncomms5646. http://www.nature.com/ncomms/2014/140902/ncomms5646/full/ncomms5646.html

  27. L’Heureux M, Butler A, Jha B, Kumar A, Wang W (2010) Unusual extremes in the negative phase of the Arctic oscillation during 2009. Geophys Res Lett. doi:10.1029/2010GL043338

    Google Scholar 

  28. Li J (2003) A modified zonal index and its physical sense. Geophys Res Lett 30(12):1632. doi:10.1029/2003GL017441

    Article  Google Scholar 

  29. Luo D, Diao Y, Feldstein SB (2011) The variability of the Atlantic storm track and the north atlantic oscillation: a link between intraseasonal and interannual variability. J Atmos Sci 68(3):577–601. doi:10.1175/2010JAS3579.1

    Article  Google Scholar 

  30. Massonnet F, Fichefet T, Goosse H, Bitz CM, Philippon-Berthier G, Holland MM, Barriat PY (2012) Constraining projections of summer Arctic sea ice. Cryosphere Discuss 6(4):2931–2959. doi:10.5194/tcd-6-2931-2012. http://www.the-cryosphere-discuss.net/6/2931/2012/

  31. Matsumura S, Zhang X, Yamazaki K (2014) Summer Arctic atmospheric circulation response to spring Eurasian snow cover and its possible linkage to accelerated sea ice decrease. J Clim. doi:10.1175/JCLI-D-13-00549.1

    Google Scholar 

  32. Moore GWK, Renfrew IA (2012) Cold European winters: interplay between the NAO and the East Atlantic mode. Atmos Sci Lett 13(1):1–8. doi:10.1002/asl.356

    Article  Google Scholar 

  33. Notz D (2015) How well must climate models agree with observations? Philos Trans R Soc A Math Phys Eng Sci 373(2052):20140,164. doi:10.1098/rsta.2014.0164. http://rsta.royalsocietypublishing.org/lookup/doi/10.1098/rsta.2014.0164

  34. Oshika M, Tachibana Y, Nakamura T (2014) Impact of the winter North Atlantic oscillation (NAO) on the Western Pacific (WP) pattern in the following winter through Arctic sea ice and ENSO : part I observational evidence. Clim Dyn. doi:10.1007/s00382-014-2384-1

    Google Scholar 

  35. Osprey SM, Gray LJ, Hardiman SC, Butchart N, Hinton TJ (2013) Stratospheric variability in twentieth-century CMIP5 simulations of the met office climate model: high top versus low top. J Clim 26(5):1595–1606. doi:10.1175/JCLI-D-12-00147.1

    Article  Google Scholar 

  36. Ostermeier GM, Wallace JM (2003) Trends in the North Atlantic oscillation northern hemisphere annular mode during the twentieth century*. J Clim 16(2):336–341. doi:10.1175/1520-0442(2003)016<0336:TITNAO>2.0.CO;2

    Article  Google Scholar 

  37. Overland J, Francis JA, Hall R, Hanna E, Kim SJ, Vihma T (2015) The melting Arctic and mid-latitude weather patterns: are they connected? J Clim. doi:10.1175/JCLI-D-14-00822.1

    Google Scholar 

  38. Peings Y, Magnusdottir G (2014) Response of the wintertime northern hemisphere atmospheric circulation to current and projected arctic sea ice decline: a numerical study with CAM5. J Clim 27:244–264. doi:10.1175/JCLI-D-13-00272.1

    Article  Google Scholar 

  39. Petoukhov V, Semenov VA (2010) A link between reduced Barents–Kara sea ice and cold winter extremes over northern continents. J Geophys Res Atmos 115(21):D21111. doi:10.1029/2009JD013568

    Article  Google Scholar 

  40. Petrie RE, Shaffrey LC, Sutton RT (2015a) Atmospheric impact of Arctic sea ice loss in a coupled ocean\(\breve{2}\)013 atmosphere simulation*. J Clim 28(24):9606–9622. doi:10.1175/JCLI-D-15-0316.1

    Article  Google Scholar 

  41. Petrie RE, Shaffrey LC, Sutton RT (2015b) Atmospheric response in summer linked to recent Arctic sea ice loss. Q J R Meteorol Soc 141(691):2070–2076. doi:10.1002/qj.2502

    Article  Google Scholar 

  42. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes, the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  43. Rind D (2005) AO/NAO response to climate change: 1. Respective influences of stratospheric and tropospheric climate changes. J Geophys Res 110(D12):D12,107. doi:10.1029/2004JD005103

    Article  Google Scholar 

  44. Scaife AA, Folland CK, Alexander LV, Moberg A, Knight JR (2008) European climate extremes and the north Atlantic oscillation. J Clim 21(1):72–83. doi:10.1175/2007JCLI1631.1

    Article  Google Scholar 

  45. Screen JA, Simmonds I, Deser C, Tomas R (2013) The atmospheric response to three decades of observed arctic sea ice loss. J Clim 26(4):1230–1248. doi:10.1175/JCLI-D-12-00063.1

    Article  Google Scholar 

  46. Screen JA, Deser C, Simmonds I, Tomas R (2014) Atmospheric impacts of Arctic sea-ice loss, 1979–2009: separating forced change from atmospheric internal variability. Clim Dyn 43(1–2):333–344. doi:10.1007/s00382-013-1830-9

    Article  Google Scholar 

  47. Sun L, Deser C, Polvani L, Tomas R (2014) Influence of projected Arctic sea ice loss on polar stratospheric ozone and circulation in spring. Environ Res Lett 9(8):084,016. doi:10.1088/1748-9326/9/8/084016. http://www.columbia.edu/~lmp/paps/sun+etal-ERL-2014-inpress.pdf http://stacks.iop.org/1748-9326/9/i=8/a=084016?key=crossref.696117343983cca75eacdc711f618c4c

  48. Sun L, Deser C, Tomas RA (2015) Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J Clim 28(19):7824–7845. doi:10.1175/JCLI-D-15-0169.1

    Article  Google Scholar 

  49. Sung MK, Lim GH, Kug JS, An SI (2011) A linkage between the North Atlantic oscillation and its downstream development due to the existence of a blocking ridge. J Geophys Res 116(D11):D11,107. doi:10.1029/2010JD015006

    Article  Google Scholar 

  50. Swart NC, Fyfe JC, Hawkins E, Kay JE, Jahn A (2015) Influence of internal variability on Arctic sea-ice trends. Nat Clim Change 5(2):86–89. doi:10.1038/nclimate2483

    Article  Google Scholar 

  51. Taws SL, Marsh R, Wells NC, Hirschi J (2011) Re-emerging ocean temperature anomalies in late-2010 associated with a repeat negative NAO. Geophys Res Lett. doi:10.1029/2011GL048978

    Google Scholar 

  52. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  53. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13(5):1000–1016. doi:10.1175/1520-0442(2000)0131000:AMITEC2.0.CO;2. http://journals.ametsoc.org/doi/abs/10.1175/1520-0442(2000)0131000:AMITEC2.0.CO;2

  54. Vihma T (2014) Effects of Arctic sea ice decline on weather and climate: a review. Surv Geophys 35(5):1175–1214. doi:10.1007/s10712-014-9284-0

    Article  Google Scholar 

  55. Woollings T, Hoskins B, Blackburn M, Berrisford P (2008) A new Rossby wave breaking interpretation of the north Atlantic oscillation. J Atmos Sci 65(2):609–626. doi:10.1175/2007JAS2347.1

    Article  Google Scholar 

  56. Woollings T, Harvey B, Masato G (2014) Arctic warming, atmospheric blockingand cold European winters in CMIP5 models. Environ Res Lett 9(1):014,002. doi:10.1088/1748-9326/9/1/014002. http://stacks.iop.org/1748-9326/9/i=1/a=014002?key=crossref.067e034ecb70a6ed7629f423f58d540e

  57. Wyatt MG, Curry JA (2013) Role for Eurasian Arctic shelf sea ice in a secularly varying hemispheric climate signal during the 20th century. Clim Dyn. doi:10.1007/s00382-013-1950-2

    Google Scholar 

  58. Yang S, Christensen JH (2012) Arctic sea ice reduction and European cold winters in CMIP5 climate change experiments. Geophys Res Lett. doi:10.1029/2012GL053338

    Google Scholar 

Download references

Acknowledgments

We would like to thank two anonymous reviewers for their useful comments. The authors were supported by the Natural Environment Research Council, UK. The CMIP5 data were accessed via the British Atmospheric Data Centre.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emma J. D. Boland.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 220 KB)

Appendix: Corrections to surface pressure

Appendix: Corrections to surface pressure

Examples of the differences in the pressure fields found in the CMIP5 models can be seen in Fig. 11, where we have plotted the global mean anomaly of surface pressure, sea level pressure, and water vapour pressure (calculated from the water vapour content multiplied by gravitational acceleration) from the Historical and RCP8.5 scenarios for the CMCC-CM, MIROC5 and ACCESS1.3 models.

Fig. 11
figure11

Examples of pressure variables, from the historical and RCP8.5 scenarios joined together, from three CMIP5 models as labelled. All values are global anomalies w.r.t. 1960–2000 climatologies, smoothed with a 4 year Hanning window. Surface pressure is shown by the blue line, sea level pressure by the green line and the water vapour pressure shown by the red line. [The surface pressure for the MIROC5 model is not visible but is equal to the water vapour pressure.]

The CMCC-CM model shows no trend in surface pressure over the 250 years of the historical and RCP8.5 simulations (the curves have been smoothed for ease of comparison), suggesting this is a ‘dry’ pressure, i.e. no water vapour is included. The water vapour pressure rises, as would be expected in a warmer atmosphere that can hold more moisture. The sea level pressure shows a drop over the same period. This is likely due to the derivation of sea level pressure over land by extrapolating using the local surface temperature—as the surface temperature rises, the sea level pressure will be lower. 16 of the models in total showed this behaviour—with a flat surface pressure curve but falling sea level pressure.

The MIROC5 model shows an increase in surface pressure exactly equal to that of the water vapour pressure, showing the surface pressure contains a contribution from water vapour. The sea level pressure also shows a rise, but it is lower than that of the surface pressure, due to the competing effect of the extrapolation over land, as described above. 16 of the models in total showed this behaviour—with a surface pressure rise equal to that of the water vapour pressure.

The ACCESS1.3 model shows increasing surface pressure, sea level pressure and water vapour pressure from the year 2000, but the rise in surface pressure cannot be determined from the change in water vapour. There were a total of 9 models which provided one or more pressure variables, but similarly showed no clear relation, or else did not provide both surface pressure and water vapour.

In order to use a consistent pressure for calculating the Northern Annular Mode, we used the surface pressure from only those models which showed a flat surface pressure curve (such as CMCC-CM), and those where we could remove the water vapour pressure to create a new, dry, surface pressure with no trend (such as MIROC5). Those models to which we have applied the correction have a ‘+’ in the ‘PS’ column in Table 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boland, E.J.D., Bracegirdle, T.J. & Shuckburgh, E.F. Assessment of sea ice-atmosphere links in CMIP5 models. Clim Dyn 49, 683–702 (2017). https://doi.org/10.1007/s00382-016-3367-1

Download citation

Keywords

  • Sea ice
  • Arctic
  • CMIP5
  • NAM
  • NAO
  • Barents–Kara sea