Climate Dynamics

, Volume 49, Issue 1–2, pp 97–112 | Cite as

Inter-decadal variations in the linkages between ENSO, the IOD and south-eastern Australian springtime rainfall in the past 30 years

  • Eun-Pa Lim
  • Harry H. Hendon
  • Mei Zhao
  • Yonghong Yin
Article

Abstract

The 30 year period 1985–2014 experienced a swing of the Inter-decadal Pacific Oscillation (IPO) from the warm phase to the cold phase. Here we investigate variation of the relation between El Niño and the Southern Oscillation (ENSO) and the Indian Ocean Dipole mode (IOD) and resultant changes in the predictability of the IOD and south-eastern Australian (SEA) springtime rainfall associated with this swing in the IPO. Using observational analyses, we show that during the warm phase of the IPO in the 1980s–1990s, the amplitudes of ENSO and the IOD were large, and the correlation between them was high; thus predictability of the IOD was high. Nevertheless, during these decades SEA spring rainfall was only weakly related to ENSO and the IOD, and therefore predictability of SEA rainfall was low. In contrast, during the cold phase of the IPO in the 2000s, the opposite was found: the IOD occurred more independently from ENSO, so the IOD was less predictable. Nonetheless, SEA spring rainfall was more strongly related to ENSO and the IOD, and therefore, SEA rainfall was more predictable in the 2000s than in the 1980s–1990s. The cause of this decadal variation in the relationship of SEA rainfall with ENSO and the IOD between the recent warm and cold states of the IPO appears to be a systematic zonal variation of the rainfall anomalies in the tropical Indo-Pacific associated with the IOD and ENSO and related changes in the Rossby wave train path over Australia.

Keywords

Decadal variability Predictability ENSO IOD Australian rainfall 

References

  1. Abram NJ, Gagan MK, Cole J, Hantoro WS, Mudelsee M (2008) Recent intensification of tropical climate variability in the Indian Ocean. Nat Geosci 1:849–853. doi:10.1038/ngeo357 CrossRefGoogle Scholar
  2. Annamalai H, Xie SP, McCreary JP, Murtugudde R (2005) Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate 18:302–319. doi:10.1175/JCLI-3268.1 CrossRefGoogle Scholar
  3. Ashok K (2003) Influence of the Indian Ocean Dipole on the Australian winter rainfall. Geophys Res Lett 30:3–6. doi:10.1029/2003GL017926 CrossRefGoogle Scholar
  4. Ashok K, Nakamura H, Yamagata T (2007a) Impacts of ENSO and Indian Ocean Dipole events on the southern hemisphere storm-track activity during austral winter. J. Climate 20:3147–3163CrossRefGoogle Scholar
  5. Ashok K, Behera SK, Rao SA et al (2007b) El Nino Modoki and its possible teleconnection. J Geophys Res Ocean. doi:10.1029/2006JC003798 Google Scholar
  6. Barnston AG, Tippett MK, L’Heureux ML et al (2012) Skill of real-time seasonal ENSO model predictions during 2002-11: is our capability increasing? Bull Am Meteorol Soc 93:631–651. doi:10.1175/BAMS-D-11-00111.1 CrossRefGoogle Scholar
  7. Cai W, van Rensch P, Cowan T, Hendon HH (2011) Teleconnection pathways for ENSO and the IOD and the mechanism for impacts on Australian rainfall. J. Climate. 24:3910–3923. doi:10.1175/2011JCLI4129.1 CrossRefGoogle Scholar
  8. Chowdary JS, Xie S-P, Tokinaga H, Okumura YM, Kubota H, Johnson N, Zheng X-T (2012) Interdecadal variations in ENSO teleconnection to the Indo–western Pacific for 1870–2007. J. Climate 25:1722–1744. doi:10.1175/JCLI-D-11-00070.1 CrossRefGoogle Scholar
  9. Chung PH, Li T (2013) Interdecadal relationship between the mean state and El Ni??o types. J Clim 26:361–379. doi:10.1175/JCLI-D-12-00106.1 CrossRefGoogle Scholar
  10. Cole JE, Dunbar RB, McClanahan TR, Muthiga NA (2000) Tropical Pacific forcing of decadal SST variability in the western Indian Ocean over the past two centuries. Science 287:617–619. doi:10.1126/science.287.5453.617 CrossRefGoogle Scholar
  11. Colman, R., L. Deschamps, M. Naughton, L. Rikus, A. Sulaiman, K. Puri, G. Roff, Z. Sun, and G. Embery, 2005: BMRC Atmospheric Model (BAM) version 3.0: Comparison with mean climatology. BMRC Research Report No. 108, Bureau of Meteorology Research Centre, 32 pp. (available from http://www.bom.gov.au/bmrc/pubs/researchreports/researchreports.htm)
  12. Cottrill A, Hendon HH et al (2013) Seasonal forecasting in the Pacific using the coupled model POAMA-2. Wea. Forecasting. 28:668–680CrossRefGoogle Scholar
  13. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828 CrossRefGoogle Scholar
  14. Fedorov AV (2000) Is El Niño Changing? Science 288:1997–2002. doi:10.1126/science.288.5473.1997 CrossRefGoogle Scholar
  15. Folland CK, Parker DE, Colman AW, Washington R (1999) Large scale modes of ocean surface temperature since the late nineteenth century. In: Navarra A (ed) Beyond El Niño. Springer, BerlinGoogle Scholar
  16. Folland CK, Renwick JA, Salinger MJ, Mullan AB (2002) Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone. Geophy. Res. Lett. 29:1643–1646CrossRefGoogle Scholar
  17. Franks SW (2004) Multi-decadal climate variability, New South Wales. Australia. Water Science and Technology 49(7):133–140Google Scholar
  18. Gallant AJE, Kiem AS, Verdon-Kidd DC et al (2012) Understanding hydroclimate processes in the Murray-Darling Basin for natural resources management. Hydrol Earth Syst Sci 16:2049–2068. doi:10.5194/hess-16-2049-2012 CrossRefGoogle Scholar
  19. Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: atmosphere and surface. In: Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, P.M. M]Google Scholar
  20. Henley BJ, Gergis J, Karoly DJ et al (2015) A Tripole Index for the Interdecadal Pacific Oscillation. Clim Dyn 45:3077–3090. doi:10.1007/s00382-015-2525-1 CrossRefGoogle Scholar
  21. Hope P, Lim E-P, Wang G, Hendon HH, Arblaster JM (2015) Contributors to the record high temperatures across Australia in late spring 2014. Bull. Amer. Met. Soc. 96(12):S149–S153CrossRefGoogle Scholar
  22. Hu Z-Z, Kumar A, Ren H-L et al (2013) Weakened Interannual Variability in the Tropical Pacific Ocean since 2000. J Clim 26:2601–2613. doi:10.1175/JCLI-D-12-00265.1 CrossRefGoogle Scholar
  23. Hudson D, Alves O, Hendon HH, Wang G (2011) The impact of atmospheric initialisation on seasonal prediction of tropical Pacific SST. Climate Dyn. 36:1155–1171CrossRefGoogle Scholar
  24. Hudson D, Marshall A, Yin Y, Alves O, Hendon H (2013) Improving intraseasonal prediction with a new ensemble generation strategy. Mon. Wea. Rev. 141:4429–4449. doi:10.1175/MWR-D-13-00059.1 CrossRefGoogle Scholar
  25. Hurrell JW, Hack JJ, Shea D, Caron JM, Rosinski J (2008) A new sea surface temperature and sea ice boundary data set for the Community Atmosphere Model. J. Climate 21:5145–5153. doi:10.1175/2008JCLI2292.1.1 CrossRefGoogle Scholar
  26. Ihara C, Kushnir Y, Cane MA (2008) Warming trend of the Indian Ocean SST and Indian Ocean dipole from 1880 to 2004. J. Climate 21:2035–2046. doi:10.1175/2007JCLI1945.1 CrossRefGoogle Scholar
  27. Jia X, Lee J-Y, Lin H, Hendon H, Ha K (2014) Interdecadal change in the Northern Hemisphere seasonal climate prediction skill: part II. Predictability and prediction skill. Clim. Dyn. 43:1611–1630. doi:10.1007/s00382-014-2084-x CrossRefGoogle Scholar
  28. Jin F-F, Ah S-I, Timmermann A, Zhao J (2003) Strong El Nino events and nonlinear dynamical heating. Geophys Res Lett 30(3):1120. doi:10.1029/2002GL016356 CrossRefGoogle Scholar
  29. Jones DA, Wang W, Fawcett R (2009) High-quality spatial climate data-sets for Australia. Australian Meteorological and Oceanographic Journal 58:233–248CrossRefGoogle Scholar
  30. Kiem AS, Franks SW (2004) Multi-decadal variability of drought risk, eastern Australia. Hydrol Process 18:2039–2050. doi:10.1002/hyp.1460 CrossRefGoogle Scholar
  31. Kiem AS, Franks SW, Kuczera G (2003) Multi-decadal variability of flood risk. Geophys Res Lett 30(2):1035. doi:10.1029/2002GL015992 CrossRefGoogle Scholar
  32. King AD, Alexander LV, Donat MG (2013) Asymmetry in the response of eastern Australia extreme rainfall to low-frequency Pacific variability. Geophys Res Lett 40:1–7. doi:10.1002/grl.50427 CrossRefGoogle Scholar
  33. Kripalani RH, Kulkarni A (1997) Climatic impact of El Niño/La Niña on the Indian monsoon: a new perspective. Weather 52:39–46. doi:10.1002/j.1477-8696.1997.tb06267.x CrossRefGoogle Scholar
  34. Kumar A, Chen M, Xue Y, Behringer D (2015) An Analysis of the Temporal Evolution of ENSO Prediction Skill in the Context of the Equatorial Pacific Ocean Observing System. Mon Weather Rev 143:3204–3213. doi:10.1175/MWR-D-15-0035.1 CrossRefGoogle Scholar
  35. Lee J-Y, Ha K-J (2015) Understanding of Interdecadal Changes in Variability and Predictability of the Northern Hemisphere Summer Tropical-Extratropical Teleconnection. J Clim 28:8634–8647. doi:10.1175/JCLI-D-15-0154.1 CrossRefGoogle Scholar
  36. Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central- 590 equatorial Pacific. Geophys Res Lett 37:L14603. doi:10.1029/2010GL044007 Google Scholar
  37. Lim E-P, Hendon HH, Hudson D, Wang G, Alves O (2009) Dynamical forecast of inter-El Niño variations of tropical SST and Australian spring rainfall. Mon. Wea. Rev. 137:3796–3810CrossRefGoogle Scholar
  38. Lim E, Hendon HH, Arblaster JM et al (2016) Interaction of the recent 50 year SST trend and La Niña 2010: amplification of the Southern Annular Mode and Australian springtime rainfall. Clim Dyn. doi:10.1007/s00382-015-2963-9 Google Scholar
  39. Meehl GA, Goddard Lisa, Murphy James, Stouffer Ronald J, Boer George, Danabasoglu Gokhan, Dixon Keith, Giorgetta Marco A, Greene Arthur M, Hawkins Ed, Hegerl Gabriele, Karoly David, Keenlyside Noel, Kimoto Masahide, Kirtman Ben, Navarra Antonio, Pulwarty Roger, Smith Doug, Stammer Detlef, Stockdale Timothy (2009) Decadal Prediction. Bull. Amer. Meteor. Soc. 90:1467–1485. doi:10.1175/2009BAMS2778.1 CrossRefGoogle Scholar
  40. Meyers GA, McIntosh PC, Pigot L, Pook MJ (2007) The years of El Niño, La Niña and interactions with the tropical Indian Ocean. J. Climate 20:2872–2880CrossRefGoogle Scholar
  41. NCL cited 2014: NCAR Command Language, Version 6.2.1. UCAR/NCAR/CISL/VETS. http://dx.doi.org/10.5065/D6WD3XH5
  42. Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the Pacific Decadal Oscillation. J. Climate 16:3853–3857CrossRefGoogle Scholar
  43. North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling Errors in the Estimation of Empirical Orthogonal Functions. Mon Weather Rev 110:699–706CrossRefGoogle Scholar
  44. Parker D, Folland C, Scaife A, Knight J, Colman A, Baines P, Dong B (2007) Decadal to multidecadal variability and the climate change background. J. Geophy. Res. 112:D18115. doi:10.1029/2007JD008411 CrossRefGoogle Scholar
  45. Power S, Colman R (2006) Multi-year predictability in a coupled general circulation model. Clim Dyn 26:247–272CrossRefGoogle Scholar
  46. Power S, Casey T, Folland C, Colman A, Mehta V (1999) Interdecadal modulation of the impact of ENSO on Australia. Climate Dyn. 15:319–324. doi:10.1007/s003820050284 CrossRefGoogle Scholar
  47. Power S, Haylock M, Colman R, Wang X (2006) The predictability of interdecadal changes in ENSO activity and ENSO teleconnections. J. Climate 19:4755–4771CrossRefGoogle Scholar
  48. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J. Climate 15:1609–1625CrossRefGoogle Scholar
  49. Risbey JS, Pook MJ, McIntosh PC, Wheeler MC, Hendon HH (2009) On the remote drivers of rainfall variability in Australia. Mon. Wea. Rev. 137:3233–3253CrossRefGoogle Scholar
  50. Rowell DP, Folland CK, Maskell K, Ward MN (1995) Variability of summer rainfall over tropical North Africa (1906–92): observations and modeling. Quart. J. Roy. Meteor. Soc. 121:669–704Google Scholar
  51. Saji N, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363Google Scholar
  52. Saji NH, Ambrizzi T, Ferraz SET (2005) Indian Ocean dipole mode events and austral surface air temperature anomalies. Dyn Atmos Oceans 39:87–100. doi:10.1016/j.dynatmoce.2004.10.015 CrossRefGoogle Scholar
  53. Salinger MJ, Basher RE, Fitzharris BB et al (1995) Climate trends in the South-west Pacific. Int J Clim 15:285–302. doi:10.1002/joc.3370150305 CrossRefGoogle Scholar
  54. Schiller A, Godfrey JS (2003) Indian Ocean intraseasonal variability in an ocean general circulation model. J. Climate 16:21–39CrossRefGoogle Scholar
  55. Schiller A, Godfrey JS, McIntosh PC, Meyers G, Smith NR, Alves O, Wang G, Fiedler R (2002) A new version of the Australian Community Ocean Model for seasonal climate prediction. CSIRO Marine Research Report No. 240Google Scholar
  56. Shi L, Hendon HH, Alves O et al (2012) How Predictable is the Indian Ocean Dipole? Mon Weather Rev 140:3867–3884. doi:10.1175/MWR-D-12-00001.1 CrossRefGoogle Scholar
  57. Valke S, Terray L, Piacentini A (2000) The OASIS coupled user guide version 2.4. Technical report TR/CMGC/00-10, CERFACSGoogle Scholar
  58. Weller E, Cai W, Du Y, Min S-K (2014) Differentiating flavors of the Indian Ocean Dipole using dominant modes in tropical Indian Ocean rainfall. Geophys Res Lett. doi:10.1002/2014GL062459 Google Scholar
  59. Yang Y, Xie S-P, Wu L et al (2015) Seasonality and Predictability of the Indian Ocean Dipole Mode: ENSO Forcing and Internal Variability. J Clim 28:8021–8036. doi:10.1175/JCLI-D-15-0078.1 CrossRefGoogle Scholar
  60. Yin Y, Alves O, Oke P (2011) An ensemble ocean data assimilation system for seasonal prediction. Mon. Wea. Rev. 139:786–808CrossRefGoogle Scholar
  61. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like inter-decadal variability: 1900-1993. J. Climate 10:1004–1020CrossRefGoogle Scholar
  62. Zhao M, Hendon HH, Alves O, Liu G, Wang G (2016) Weakened El Niño predictability in the early 21st century. J Clim. http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-15-0876.1 (in print)

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Bureau of MeteorologyMelbourneAustralia

Personalised recommendations