Climate Dynamics

, Volume 49, Issue 1–2, pp 71–95 | Cite as

Continental-scale convection-permitting modeling of the current and future climate of North America

  • Changhai Liu
  • Kyoko Ikeda
  • Roy Rasmussen
  • Mike Barlage
  • Andrew J. Newman
  • Andreas F. Prein
  • Fei Chen
  • Liang Chen
  • Martyn Clark
  • Aiguo Dai
  • Jimy Dudhia
  • Trude Eidhammer
  • David Gochis
  • Ethan Gutmann
  • Sopan Kurkute
  • Yanping Li
  • Gregory Thompson
  • David Yates
Article

Abstract

Orographic precipitation and snowpack provide a vital water resource for the western U.S., while convective precipitation accounts for a significant part of annual precipitation in the eastern U.S. As a result, water managers are keenly interested in their fate under climate change. However, previous studies of water cycle changes in the U.S. have been conducted with climate models of relatively coarse resolution, leading to potential misrepresentation of key physical processes. This paper presents results from a high-resolution climate change simulation that permits convection and resolves mesoscale orography at 4-km grid spacing over much of North America using the Weather Research and Forecasting (WRF) model. Two 13-year simulations were performed, consisting of a retrospective simulation (October 2000–September 2013) with initial and boundary conditions from ERA-interim and a future climate sensitivity simulation with modified reanalysis-derived initial and boundary conditions through adding the CMIP5 ensemble-mean high-end emission scenario climate change. The retrospective simulation is evaluated by validating against Snowpack Telemetry (SNOTEL) and an ensemble of gridded observational datasets. It shows overall good performance capturing the annual/seasonal/sub-seasonal precipitation and surface temperature climatology except for a summer dry and warm bias in the central U.S. In particular, the WRF seasonal precipitation agrees with SNOTEL observations within a few percent over the mountain ranges, providing confidence in the model’s estimation of western U.S. seasonal snowfall and snowpack. The future climate simulation forced with warmer and moister perturbed boundary conditions enhances annual and winter-spring-fall seasonal precipitation over most of the contiguous United States (CONUS), but suppresses summertime precipitation in the central U.S. The WRF-downscaled climate change simulations provide a high-resolution dataset (i.e., High-Resolution CONUS downscaling, HRCONUS) to the community for studying one possible scenario of regional climate changes and impacts.

Keywords

Convection-permitting Regional climate simulation Water cycle Pseudo global warming 

References

  1. Ashouri H, Hsu KL, Sorooshian S, Braithwaite DK, Knapp KR, Cecil LD, Nelson BR, Prat OP (2015) PERSIANN-CDR: daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull Amer Meteor Soc 96:69–83CrossRefGoogle Scholar
  2. Baldauf M, Seifert A, Förstner J, Majewski D, Raschendorfer M, Reinhardt T (2011) Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon Weather Rev 139(12):3887–3905. doi:10.1175/MWR-D-10-05013.1 CrossRefGoogle Scholar
  3. Ban N, Schmidli J, Schär C (2014) Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J Geophys Res Atmos 119:7889–7907. doi:10.1002/2014JD021478 CrossRefGoogle Scholar
  4. Boden TA, Krassovski M, Yang B (2013) The AmeriFlux data activity and data system: an evolving collection of data management techniques, tools, products and services. Geosci Instrum Methods Data Syst 3:59–85CrossRefGoogle Scholar
  5. Carbone RE, Tuttle JD (2008) Rainfall occurrence in the U. S. warm season: the diurnal cycle. J Clim 21:4132–4146CrossRefGoogle Scholar
  6. Carbone RE, Tuttle JD, Ahijevych DA, Trier SB (2002) Inferences of predictability associated with warm season precipitation episodes. J Atmos Sci 59:2033–2056CrossRefGoogle Scholar
  7. Chan SC, Kendon EJ, Fowler HJ, Blenkinsop S, Roberts NM, Ferro CAT (2014) The value of high-resolution met office regional climate models in the simulation of multihourly precipitation extremes. J Clim 27(16):6155–6174CrossRefGoogle Scholar
  8. Chen F, Liu C-H, Dudhia J, Chen M (2014) A sensitivity study of high-resolution regional climate simulations to three land surface models over the western United States. J Geophys Res 119:7271–7291. doi:10.1002/2014JD021827 Google Scholar
  9. Clark MP, Wilby RL, Gutmann ED et al (2016) Characterizing uncertainty of the hydrologic impacts of climate change. Curr Clim Change Rep 2(2):55–64. doi:10.1007/s40641-016-0034-x CrossRefGoogle Scholar
  10. Computational and Information Systems Laboratory (2012) Yellowstone: IBM iDataPlex system (Wyoming-NCAR Alliance). Boulder, CO: National Center for Atmospheric Research. http://n2t.net/ark:/85065/d7wd3xhc
  11. Cook BI, Ault TR, Smerdon JE (2015) Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci Adv 1(1):e1400082–e1400082CrossRefGoogle Scholar
  12. Dai A-G, Trenberth KE (2004) The diurnal cycle and its depiction in the community climate system model. J Clim 17:930–950CrossRefGoogle Scholar
  13. Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor GH, Curtis J, Pasteris PP (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int J Climatol 28:2031–2064CrossRefGoogle Scholar
  14. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137:553–597. doi:10.1002/qj.828 CrossRefGoogle Scholar
  15. Deser C, Knutti R, Solomon S, Phillips AS (2012) Communications of the role of natural variability in future North American climate. Nat Clim Change 2:775–779. doi:10.1038/nclimate1562 CrossRefGoogle Scholar
  16. Deser C, Terray L, Phillips AS (2016) Forced and internal components of winter air temperature trends over North America during the past 50 years: mechanisms and implications. J Clim 29:2237–2258. doi:10.1175/JCLI-D-15 CrossRefGoogle Scholar
  17. Done J, Davis CA, Weisman M (2004) The next generation of NWP: explicit forecasts of convection using the Weather Research and Forecasting (WRF) model. Atmos Sci Lett 5(6):110–117CrossRefGoogle Scholar
  18. Done JM, Holland GJ, Bruyère CL et al (2015) Modeling high-impact weather and climate: lessons from a tropical cyclone perspective. Clim Change 129(3):381–395. doi:10.1007/s10584-013-0954-6 CrossRefGoogle Scholar
  19. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the national centers for environmental prediction operational mesoscale eta model. J Geophys Res 108:8851CrossRefGoogle Scholar
  20. Feser F, Rockel B, von Storch H, Winterfeldt J, Zahn M (2011) Regional climate models add value to global model data: a review and selected examples. Bull Am Meteorol Soc 92(9):1181–1192CrossRefGoogle Scholar
  21. Fosser G, Khodayar S, Berg P (2014) Benefit of convection permitting climate model simulations in the representation of convective precipitation. Clim Dyn 44(1–2):45–60Google Scholar
  22. Gutmann E, Pruitt T, Clark MP, Brekke L, Arnold JR, Raff DA, Rasmussen RM (2014) An intercomparison of statistical downscaling methods used for water resource assessments in the United States. Water Resour Res 50:7167–7186CrossRefGoogle Scholar
  23. Hagos SM, Leung LR, Yoon J-H, Lu J, Gao Y (2016) A projection of changes in landfalling atmospheric river frequency and extreme precipitation over western North America from the large ensemble CESM simulations. Geophys Res Lett 43:1357–1363. doi:10.1002/2015GL067392 CrossRefGoogle Scholar
  24. Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Wea Rev 134:2318–2341CrossRefGoogle Scholar
  25. Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55CrossRefGoogle Scholar
  26. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res 113:D13103. doi:10.1029/2008JD009944 CrossRefGoogle Scholar
  27. Ikeda K et al (2010) Simulation of seasonal snowfall over Colorado. Atmos Res 97:462–477CrossRefGoogle Scholar
  28. Kendon EJ, Roberts NM, Senior CA, Roberts MJ (2012) Realism of rainfall in a very high-resolution regional climate model. J Clim 25(17):5791–5806CrossRefGoogle Scholar
  29. Kendon EJ, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Senior CA (2014) Heavier summer downpours with climate change revealed by weather forecast resolution model. Nature Clim Change 4:570–576CrossRefGoogle Scholar
  30. Knote C, Heinemann G, Rockel B (2010) Changes in weather extremes: assessment of return values using high resolution climate simulations at convection-resolving scale. Meteorol Z 19(1):11–23CrossRefGoogle Scholar
  31. Langhans W, Schmidli J, Fuhrer O, Bieri S, Schär C (2013) Long-term simulations of thermally driven flows and orographic convection at convection-parameterizing and cloud-resolving resolutions. J Appl Meteorol Climatol 52(6):1490–1510CrossRefGoogle Scholar
  32. Letcher TW, Minder JR (2015) Characterization of the simulated regional snow albedo feedback using a regional climate model over complex terrain. J Clim 28(19):7576–7595CrossRefGoogle Scholar
  33. Liu C-H, Moncrieff MW, Tuttle JD, Carbone RE (2006) Explicit and parameterized episodes of warm-season precipitation over the continental United States. Adv Atmos Sci 23:91–105. doi:10.1007/s00376-006-0010-9 CrossRefGoogle Scholar
  34. Liu C-H, Ikeda K, Thompson G, Rasmussen RM, Dudhia J (2011) High-resolution simulations of wintertime precipitation in the Colorado Headwaters region: sensitivity to physics parameterizations. Mon Wea Rev 139:3533–3553CrossRefGoogle Scholar
  35. Livneh B, Rosenberg EA, Lin C, Nijssen B, Mishra V, Andreadis KM, Maurer EP, Lettenmaier DP (2013) A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: update and extensions. J Clim 26:9384–9392CrossRefGoogle Scholar
  36. Maloney ED et al (2014) North American climate in CMIP5 experiments: part III: assessment of twenty-first-century projections. J Clim 27:2230–2270. doi:10.1175/JCLI-D-13-00273.1 CrossRefGoogle Scholar
  37. Maurer EP, Wood AW, Adam JC, Lettenmaier DP, Nijssen B (2002) A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J Clim 15:3237–3251CrossRefGoogle Scholar
  38. Meyer JDD, Jin J-M, Wang S-Y (2012) Systematic patterns of the inconsistency between snow water equivalent and accumulated precipitation as reported by the snowpack telemetry network. J Hydrometeorol 13:1970–1976CrossRefGoogle Scholar
  39. Moncrieff and Liu (2006) Representing convective organization in prediction models by a hybrid strategy. J Atmos Sci 63:3404–3420CrossRefGoogle Scholar
  40. Morcrette C, Petch J, H-Y Ma, S Klein, S Xie (2013) Clouds above the United States and errors at the surface (CAUSES). Available online at http://asr.science.energy.gov/meetings/fall-working-groups/2013/presentations/causes_for_mc3e_breakout.pdf
  41. Newman AJ, Clark MP, Craig J, Nijssen B, Wood A, Gutmann E, Mizukami N, Brekke L, Arnold JR (2015) Gridded ensemble precipitation and temperature estimates for the contiguous United States. J Hydrometeorol 16:2481–2500CrossRefGoogle Scholar
  42. Niu GY et al (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 1. model description and evaluation with local-scale measurements. J Geophys Res 116:D12109. doi:10.1029/2010JD015139 CrossRefGoogle Scholar
  43. Prein A, Gobiet A, Suklitsch M, Truhetz H, Awan N, Keuler K, Georgievski G (2013a) Added value of convection permitting seasonal simulations. Clim Dyn 41(9–10):2655–2677CrossRefGoogle Scholar
  44. Prein AF, Holland GJ, Rasmussen RM, Done J, Ikeda K, Clark MP, Liu CH (2013b) Importance of regional climate model grid spacing for the simulation of heavy precipitation in the Colorado headwaters. J Clim 26(13):4848–4857CrossRefGoogle Scholar
  45. Prein AF et al (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev Geophys 53(2):323–361CrossRefGoogle Scholar
  46. Rasmussen RM et al (2011) High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: a process study of current and warmer climate. J Clim 24:3015–3048CrossRefGoogle Scholar
  47. Rasmussen RM et al (2012) How well are we measuring snow: the NOAA/FAA/NCAR winter precipitation test bed. Bull Amer Meteor Soc 93:811–829CrossRefGoogle Scholar
  48. Rasmussen RM et al (2014a) Climate change impacts on the water balance of the Colorado Headwaters: high-resolution regional climate model simulations. J Hydrometeorol 15:1091–1116CrossRefGoogle Scholar
  49. Rasmussen RM, Newman AJ, Liu C-H, Ikeda K, Barlage M (2014b) Examination of climate simulations across spatial resolutions and their representation of the continental high temperature bias over North America. AGU, San FranciscoGoogle Scholar
  50. Seager R, Ting M, Held I, Kushnir Y, Lu J, Vecchi G, Huang H-P, Harnik N, Leetmaa A, Lau N-C, Li C, Velez J, Naik N (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Sci 316 (5828):1181–1184CrossRefGoogle Scholar
  51. Serreze MC, Clark MP, Armstrong RL, McGinnis DA, Pulwarty RS (1999) Characteristics of the western United States snowpack from snowpack telemetery (SNOTEL) data. Water Resour Res 35:2145–2160. doi:10.1029/1999WR900090 CrossRefGoogle Scholar
  52. Serreze MC, Clark MP, Frei A (2001) Characteristics of large snowfall events in the montane western United States as examined using snowpack telemetry (SNOTEL) data. Water Resour Res 37:675–688. doi:10.1029/2000WR900307 CrossRefGoogle Scholar
  53. Thompson G, Eidhammer T (2014) A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J Atmos Sci 71:3636–3658CrossRefGoogle Scholar
  54. Thornton PE, Thornton MM, Mayer BW, Wilhelmi N, Wei Y, Devarakonda R, Cook RB (2014) Daymet: daily surface weather data on a 1-km Grid for North America, Version 2. Oak Ridge National Laboratory (ORNL), Oak RidgeGoogle Scholar
  55. Trier SB, Davis CA, Ahijevych DA, Weisman ML, Bryan GH (2006) Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J Atmos Sci 63:2437–2461CrossRefGoogle Scholar
  56. Trier SB, Davis CA, Carbone RE (2014) Mechanisms governing the persistence and diurnal cycle of a heavy rainfall corridor. J Atmos Sci 71:4102–4126. doi:10.1175/JAS-D-14-0134.1 CrossRefGoogle Scholar
  57. Tuttle JD, Davis CA (2006) Corridors of warm season precipitation in the central United States. Mon Wea Rev 134:2297–2317. doi:10.1175/MWR3188.1 CrossRefGoogle Scholar
  58. Warner TT (2011) Numerical weather and climate prediction. Cambridge University Press, Cambridge, p 522Google Scholar
  59. Yang D, Goodison BE, Metcalfe JR, Golubev VS, Bates R, Pangburn T, Hanson CL (1998) Accuracy of NWS 8″ standard nonrecording precipitation gauge: results and application of WMO intercomparison. J Atmos Oceanic Technol 15:54–68CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Changhai Liu
    • 1
  • Kyoko Ikeda
    • 1
  • Roy Rasmussen
    • 1
  • Mike Barlage
    • 1
  • Andrew J. Newman
    • 1
  • Andreas F. Prein
    • 1
  • Fei Chen
    • 1
  • Liang Chen
    • 3
  • Martyn Clark
    • 1
  • Aiguo Dai
    • 2
  • Jimy Dudhia
    • 1
  • Trude Eidhammer
    • 1
  • David Gochis
    • 1
  • Ethan Gutmann
    • 1
  • Sopan Kurkute
    • 3
  • Yanping Li
    • 3
  • Gregory Thompson
    • 1
  • David Yates
    • 1
  1. 1.NCAR National Center for Atmospheric ResearchBoulderUSA
  2. 2.State University of New York at AlbanyAlbanyUSA
  3. 3.University of SaskatchewanSaskatoonCanada

Personalised recommendations