Skip to main content

Advertisement

Log in

Interannual variability of Indian Ocean subtropical mode water subduction rate

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The interannual variation of Indian Ocean subtropical mode water (IOSTMW) subduction rate in the Southwest Indian Ocean from 1980 to 2007 is investigated in this paper based on Simple Ocean Data Assimilation (SODA) outputs. Climatology of subduction rate exceeds 75 m/year in the IOSTMW formation area. The renewal time of permanent pycnocline water mass based on the subduction rate is calculated for each density class: 3–6 years for IOSTMW (25.8 < σ θ  < 26.2 kg m−3). Subduction rate in the Southwest Indian Ocean subtropical gyre exhibits a great year-to-year variability. This interannual variations of the IOSTMW subduction rate is primarily dominated by the lateral induction term, associated with the interannual variations of strong meridional gradient of winter mixed layer depth (MLD). The slope of the mixed layer depth in the mode water is closely linked to the large variations of deep late winter MLD in the mid-latitudes and negligible variations of shallow winter MLD in lower latitudes. It is further identified that the interannual variation of late winter MLD in this area is largely controlled by the latent and sensible heat flux components. The water volume of the permanent pycnocline in the IOSTMW distribution area is also found to show a significant interannual variability, and it is well correlated with the interannual variation of subduction rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Antonov JI, Seidov D, Boyer TP, Locarnini RA, Mishonov AV, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009. In: Levitus S (ed) NOAA Atlas NESDIS 69. Salinity, vol 2. U.S. Government Printing Office, Washington, DC, p 184

  • Banks HT, Wood RA, Gregory JM, Johns TC, Jones GS (2000) Are observed decadal changes in the intermediate water masses a signature of anthropogenic climate change? Geophys Res Lett 27:2961–2964

    Article  Google Scholar 

  • Davis XJ, Rothstein LM, Dewar WK, Menemenlis D (2011) Numerical investigations of seasonal and interannual variability of North Pacific subtropical mode water and its implications for Pacific climate variability. J Clim 24:2648–2665

    Article  Google Scholar 

  • Fine RA (1993) Circulation of the Antarctique intermediate water in the South Indian Ocean. Deep-Sea Res 40:2021–2042

    Article  Google Scholar 

  • Hanawa K, Kamada J (2001) Variability of core layer temperature (CLT) of the North Pacific subtropical mode water. Geophys Res Lett 28:2229–2232

    Article  Google Scholar 

  • Hanawa K, Talley LD (2001) Mode waters. In: Siedler G, Church J, Gould J (eds) Ocean circulation and climate, International geophysics series. Academic, New York, pp 373–386

  • Hazeleger W, Drijfhout SS (2000) Eddy subduction in a model of the subtropical gyre. J Phys Oceanogr 30:677–695

    Article  Google Scholar 

  • Hellerman S, Rosenstein M (1983) Normal monthly wind stress over the world ocean with error estimates. J Phys Oceanogr 13:1093–1104

    Article  Google Scholar 

  • Holbrook N, Maharaj A (2008) Southwest Pacific subtropical mode water: a climatology. Prog Oceanogr 77:298–315

    Article  Google Scholar 

  • Hosoda S, Xie S-P, Takeuchi K, Nonaka N (2004) Interdecadal temperature variations in the North Pacific Central Mode Water simulated by an OGCM. J Oceanogr 60:865–877

    Article  Google Scholar 

  • Iselin CO’D (1939) The influence of vertical and lateral turbulence on the characteristics of the waters at mid-depths. Trans Am Geophys Union 20(3):414–417

    Article  Google Scholar 

  • Josey SA, Kent FC, Taylor PK (1999) New insights into the ocean heat budget closure problem from analysis of the SOC air–sea flux climatology. J Clim 12:2856–2880

    Article  Google Scholar 

  • Karstensen J, Quadfasel D (2002a) Formation of southern hemisphere thermocline waters: water mass conversion and subduction. J Phys Oceanogr 32:3020–3038

    Article  Google Scholar 

  • Karstensen J, Quadfasel D (2002b) Water subducted into the Indian Ocean subtropical gyre. Deep Sea Res II 49:1441–1457

    Article  Google Scholar 

  • Kobayashi T, Suga T (2006) The Indian Ocean hydrobase: a high-quality climatological dataset for the Indian Ocean. Prog Oceanogr 68:75–114

    Article  Google Scholar 

  • Ladd C, Thompson LA (2000) Formation mechanisms for North Pacific central and eastern subtropical mode waters. J Phys Oceanogr 30:868–887

    Article  Google Scholar 

  • Li Z (2012) Interannual and decadal variability of the subtropical mode water formation in the South Pacific Ocean. Ocean Model 47:96–112

    Article  Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009. In: Levitus S (ed) NOAA Atlas NESDIS 68. Temperature, vol 1. U.S. Government Printing Office, Washington, DC, p 184

  • Lutjeharms JRE, Machu E (2000) An upwelling cell inshore of the East Madagascar Current. Deep Sea Res Part I 47:2405–2411

    Article  Google Scholar 

  • Ma J, Lan J, Zhang N (2016) A study of Indian Ocean subtropical mode water: subduction rate and water characteristics. Acta Oceanol Sin 35:38–45

    Article  Google Scholar 

  • Marsh R, Nurser AJG, Megann AP, New AL (2000) Water mass transformation in the Southern Ocean of a global isopycnal coordinate GCM. J Phys Oceanogr 30:1013–1045

    Article  Google Scholar 

  • Masuzawa J (1969) Subtropical mode water. Deep Sea Res 16:463–472

    Google Scholar 

  • McCartney MS (1977) Subantarctic mode water. In: Angel MV (ed) A voyage of discovery: George Deacon 70th anniversary volume (supplement to deep-sea research). Pergamon, Oxford, pp 103–119

    Google Scholar 

  • McCartney MS (1982) The subtropical recirculation of mode waters. J Mar Res 40(Supp1):427–464

    Google Scholar 

  • Old C, Haines K (2006) North Atlantic subtropical mode waters and ocean memory in HadCM3. J Clim 19:1126–1148

    Article  Google Scholar 

  • Olson DB, Fine RA, Gordon AL (1992) Convective modification of water masses in the Agulhas? Deep-Sea Res 39(Supp 1):163–181

    Article  Google Scholar 

  • Prasad TG (2004) A comparison of mixed-layer dynamics between the Arabian Sea and Bay of Bengal: one-dimensional model results. J Geophys Res. doi:10.1029/2003JC002000

    Google Scholar 

  • Qiu B, Chen S (2006) Decadal variability in the formation of the North Pacific subtropical mode water: oceanic versus atmospheric control. J Phys Oceanogr 36:1365–1380

    Article  Google Scholar 

  • Qiu B, Huang RX (1995) Ventilation of the North Atlantic and North Pacific: subduction versus obduction. J Phys Oceanogr 25:2374–2390

    Article  Google Scholar 

  • Qu T, Chen J (2009) A North Pacific decadal variability in subduction rate. Geophys Res Lett 36:L22602. doi:10.1029/2009GL040914

    Article  Google Scholar 

  • Qu T, Xie S-P, Mitsudera H, Ishida A (2002) Subduction of the North Pacific mode water in a global high-resolution GCM. J Phys Oceanogr 32:746–763

    Article  Google Scholar 

  • Quartly GD, Srokosz MA (2002) SST observations of the Agulhas and East Madagascar retroflections by TRMM microwave imager. J Phys Oceanogr 32:1585–1592

    Article  Google Scholar 

  • Rainville L, Jayne SR, McClean JL, Multrud ME (2007) Formation of subtropical mode water in a high-resolution ocean simulation of the Kuroshio extension region. Ocean Model 17:338–356

    Article  Google Scholar 

  • Smith RD, Dukowicz JK, Malone RC (1992) Parallel ocean general circulation modeling. Phys D Nonlinear Phenom 60:38–61

    Article  Google Scholar 

  • Stommel HM (1979) Determination of water mass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc Natl Acad Sci USA 76(7):3051–3055

    Article  Google Scholar 

  • Stramma L, Lutjeharms JRE (1997) The flow field of the subtropical gyre of the South Indian Ocean. J Geophys Res 102(C3):5513–5530

    Article  Google Scholar 

  • Suga T, Aoki Y, Saito H, Hanawa K (2008) Ventilation of the North Pacific subtropical pycnocline and mode water formation. Prog Oceanogr 77:285–297

    Article  Google Scholar 

  • Taguchi B, Xie S-P, Mitsudera H, Kubokawa A (2005) Response of the Kuroshio Extension to Rossby waves associated with the 1970s climate regime shift in a high-resolution ocean model. J Clim 18:2979–2995

    Article  Google Scholar 

  • Toole JM, Warren BA (1993) A hydrographic section across the subtropical South Indian Ocean. Deep-Sea Res 40:1973–2019

    Article  Google Scholar 

  • Toyama K, Iwasaki A, Suga T (2015) Interannual variation of annual subduction rate in the North Pacific estimated from a gridded argo product. J Phys Oceanogr 45:2276–2293

    Article  Google Scholar 

  • Tsubouchi T, Suga T, Hanawa K (2010) Indian Ocean subtropical mode water: its water characteristics and spatial distribution. Ocean Sci 6:41–50

    Article  Google Scholar 

  • Woods JD (1985) The physics of the thermocline ventilation. In: Nihoul JCJ (ed) Coupled ocean–atmosphere models. Elsevier, Kidlington, pp 543–590

  • Worthington LV (1959) The 18°C water in the Sargasso Sea. Deep Sea Res 5:297–305

    Google Scholar 

  • Yasuda T, Kitamura Y (2003) Long-term variability of the North Pacific subtropical mode water in response to the spin-up of the subtropical gyre. J Oceanogr 9:279–290

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (41276011, 41521091, U1406401), the Research Project of Chinese Ministry of Education (113041A), and the Global Change and Air-Sea Interaction (GASI-03-01-01-05). The authors are thankful to the SODA/TAMU Research Group, the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR), the National Oceanographic Data Center (NODC), the Southampton Oceanography Centre for providing the data sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Lan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Lan, J. Interannual variability of Indian Ocean subtropical mode water subduction rate. Clim Dyn 48, 4093–4107 (2017). https://doi.org/10.1007/s00382-016-3322-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3322-1

Keywords

Navigation