Advertisement

Climate Dynamics

, Volume 48, Issue 11–12, pp 3829–3854 | Cite as

How distinct are the two flavors of El Niño in retrospective forecasts of Climate Forecast System version 2 (CFSv2)?

  • Prasanth A. Pillai
  • Suryachandra A. Rao
  • Gibies George
  • D. Nagarjuna Rao
  • S. Mahapatra
  • M. Rajeevan
  • Ashish Dhakate
  • Kiran Salunke
Article

Abstract

Two different flavors of El Niño-Southern Oscillation (ENSO, canonical east Pacific type and Modoki/central Pacific type) are reported in the recent decades and are found to influence the global climate in different ways. The success of a seasonal prediction system is dependent on its ability to capture these two ENSO flavors accurately, together with associated teleconnections. The present study analyses the ability of Climate Forecast System version 2 (CFSv2) in simulating the two El Niño flavors and their teleconnections. The study uses two versions of CFSv2 in which the atmospheric model horizontal resolutions are different (T126 at 100 km and T382 at 38 km) and are initialized from a calendar month, ranging from February to June. The canonical ENSO pattern is captured as prominent mode of tropical Pacific sea surface temperature (SST) by both resolutions of CFSv2. Even though the tri-polar structure of ENSO Modoki is simulated as second mode, it has some disagreement with observations. The canonical El Niño induced SST, rainfall and atmospheric circulation in the tropical Pacific in summer and fall seasons are comparable with observations in both models. Meanwhile, the teleconnections in the tropical Indian Ocean and Indian monsoon regions are close to observations in T382 only. Teleconnections associated with El Niño Modoki are proper in T382 hindcasts, in which SST bias in Indian Ocean is slightly warm and the cold bias in central Pacific is marginal (mainly for Feb IC hindcasts). The present study indicates that the distinction of ENSO flavors in summer is the major reason for the higher skill of Indian summer monsoon rainfall (ISMR) in CFSv2 T382 Feb IC hindcasts. However, teleconnections associated with two flavors of ENSO are not distinguishable in fall and winter seasons, even in higher resolution model due to the presence of strong cold SST bias in central Pacific and warm SST bias in extreme east Pacific. Thus present study confirms that, higher resolution CFSv2 is required to differentiate the flavors of ENSO and their teleconnections properly. It has better prediction skill for ISMR at a lead time of 4 months, which is significant for seasonal prediction of Indian summer monsoon.

Keywords

El Niño flavors El Niño Modoki Teleconnection All India summer monsoon rainfall Model skill CFSv2 

Notes

Acknowledgments

The Indian Institute of tropical Meteorology is fully supported by the Ministry of Earth Sciences (MoES), Govt. of India. Original version of CFSv2 is obtained from NCEP under Mou between MoES and NOAA. The model hindcasts are run in IITM in-house HPC system “Aaditya”. Authors thank India Meteorological Department for IMD rainfall data; Other observational/reanalysis data sets like GPCP rainfall, ECMWF wind, HadISST are downloaded from their respective websites.We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 2 of this paper) for producing and making available their model output. The editor and two anonymous reviewers of the journal are acknowledged for their suggestions, which helped us to improve the manuscript significantly.

References

  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167CrossRefGoogle Scholar
  2. Annamalai H, Hamilton K, Sperber KR (2007) South Asian summer monsoon and its relationship with ENSO in the IPCC Ar4 simulations. J Clim 20:1071–1092CrossRefGoogle Scholar
  3. Ashok K, Behera S, Rao AS, Weng H, Yamagata T (2007) El Niño Modoki and its teleconnection. J Geophys Res 112:C11007. doi: 10.1029/2006JC003798 CrossRefGoogle Scholar
  4. Capotondi A et al (2015) Understanding ENSO diversity. BAMS 96:921–938Google Scholar
  5. Carton JA, Chepurin G, Cao X, Giese B (2000) A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: methodology. J Phys Oceanogr 30:294–309CrossRefGoogle Scholar
  6. Chattopadhyay R, Rao SA, Sabeerali CT, George G, Rao DN, Dhakate A, Salunke K (2015) Large scale teleconnection pattern of Indian summer monsoon as revealed by CFSv2 retrospective seasonal forecast runs. Int J Climatol. doi: 10.1002/joc.4556 Google Scholar
  7. Cherchi A, Navarra A (2007) Sensitivity of the Asian summer monsoon to the horizontal resolution: differences between AMIP type and coupled model experiments. Clim Dyn 28:273–290. doi: 10.1007/s00382-006-0183-z CrossRefGoogle Scholar
  8. Dee DP et al (2011) The ERA–Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRefGoogle Scholar
  9. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarplay JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 1089(D22):8851. doi: 10.1029/2002JD003296 CrossRefGoogle Scholar
  10. Griffies SM, Harrison MJ, Pacanowski RC, Rosati A (2004) A technical guide to MOM4. GFDL Ocean Group Tech Rep 5:337Google Scholar
  11. Ham YG, Kug JS (2012) How well do current climate models simulate two types of El Niño? Clim Dyn 39:383–398CrossRefGoogle Scholar
  12. Ham YG, Kug JS (2015) Improvement of ENSO simulation based on intermodel diversity. J Clim 28:998–1015CrossRefGoogle Scholar
  13. Hayashi W, Liu T, Patzert W, Wang O (2010) Record warming in the South Pacific and western Antarctica associated with the strong central-Pacific El Niño in 2009–10. Geophys Res Lett 37:L19704. doi: 10.1029/2010GL044865 CrossRefGoogle Scholar
  14. Hendon HH, Lim E, Wang G, Alves O, Hudson D (2009) Prospects for predicting two flavours of El Niño. Geophys Res Lett 36:L19713CrossRefGoogle Scholar
  15. Jung T, Miller MJ, Palmer TN, Towers P, Wedi N, Achuthavarier D, Adams JM, Altshuler EL, Cash BA, Kinter JL III, Marx L, Stan C, Hodges KI (2012) High-resolution global climate simulations with the ECMWF model in Project Athena: experimental design, model climate, and seasonal forecast skill. J Clim 25:3155–3172CrossRefGoogle Scholar
  16. Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of El Niño. J Clim 22:615–632. doi: 10.1175/2008JCLI2309.1 CrossRefGoogle Scholar
  17. Kim S, Yu JY (2012) Two types of ENSO in CMIP5 models. Geophys Res Lett 39:L11704Google Scholar
  18. Kim HM, Webster PJ, Curry JA (2009) Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science 325:77–80. doi: 10.1126/science.1174062 CrossRefGoogle Scholar
  19. Kim ST, Yu JY, Kumar A, Wang H (2012) Examination of the two types of ENSO in the NCEP CFS model and its extra-tropical associations. Mon Weather Rev 140:1908–1923. doi: 10.1175/MWR-D-11-00300.1 CrossRefGoogle Scholar
  20. Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515. doi: 10.1175/2008JCLI2624.1 CrossRefGoogle Scholar
  21. Kug JS, Ham YG, Lee JY, Jin FF (2012) Improved simulation of two types of El Niño in CMIP5 models. Environ Res Lett 7:1–7Google Scholar
  22. Kumar KK, Rajagopal B, Hoerling H, Bates G, Cane M (2006) Unraveling the mystery of Indian monsoon failure during El Niño. Science 314:115–118CrossRefGoogle Scholar
  23. Larkin NK, Harrison DE (2005) On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys Res Lett 32:L13705. doi: 10.1029/2005GL022738 CrossRefGoogle Scholar
  24. Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37:L14603. doi: 10.1029/2010GL044007 Google Scholar
  25. Mo K (2010) Interdecadal modulation of the impact of ENSO on precipitation and temperature over the United States. J Clim 23:3639–3656. doi: 10.1175/2010JCLI3553.1 CrossRefGoogle Scholar
  26. Mooley DA, Parthasarathy B (1984) Indian summer monsoon and El Niño. Pure Appl Geophys 121:339–352CrossRefGoogle Scholar
  27. Rajeevan M, Pai DS (2007) On the El Niño_Indian monsoon predictive relationships. Geophys Res Lett 34:L04704CrossRefGoogle Scholar
  28. Rajeevan M, Bhate J, Kale JD, Lal B (2006) High resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spells. Curr Sci 91:296–306Google Scholar
  29. Rajendran K, Kitoh A, Mizuta R, Sajani S, Nakazawa T (2008) High-resolution simulation of mean convection and its intraseasonal variability over the tropics in the MRI/JMA 20-km Mesh AGCM. J Clim 21:3722–3739CrossRefGoogle Scholar
  30. Ramu DA, Sabeerali CT, Chattopadayay R, Rao DN, George G, Dhakate A, Salunke K, Sreevastava A, Rao SA (2016) Indian Summer Monsoon Rainfall simulation and prediction skill in the CFSv2 Coupled Model: impact of atmospheric horizontal resolution. J Geophys Res 121:2205–2221Google Scholar
  31. Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384CrossRefGoogle Scholar
  32. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407CrossRefGoogle Scholar
  33. Saha S et al (2010) The NCEP Climate Forecast System reanalysis. Bull Am Meteorol Soc 91:1015–1057CrossRefGoogle Scholar
  34. Saha S et al (2014) The NCEP Climate Forecast System version 2. J Clim 27:2185–2208. doi: 10.1175/JCLI-D-12-00823.1 CrossRefGoogle Scholar
  35. Soman MK, Slingo J (1997) Sensitivity of the Asian summer monsoon rainfall to aspects of SST anomalies in the tropical Pacific Ocean. Q J R Meteorol Soc 123:309–336CrossRefGoogle Scholar
  36. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experimental design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  37. Trenberth K, Stepaniak DP (2001) Indices of El Niño evolution. J Clim 14:1697–1701. doi: 10.1175/1520-0442(2001) CrossRefGoogle Scholar
  38. Turner AG, Inness PM, Slingo JM (2005) The role of the basic state in the ENSO–monsoon relationship and implications for predictability. Q J R Meteorol Soc 131:781–804CrossRefGoogle Scholar
  39. Wang C, Weisberg RH (2000) The 1997–98 El Niño evolution relative to previous El Niño events. J Clim 13:488–501CrossRefGoogle Scholar
  40. Wang B, Xiang B, Li J, Webster PJ, Rajeevan M, Liu J, Ha KJ (2015) Rethinking Indian monsoon rainfall prediction in the context of recent global warming. Nat Commun 6:7154. doi: 10.1038/ncomms8154 CrossRefGoogle Scholar
  41. Weng H, Ashok K, Behera SK, Rao SA, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29:113–129. doi: 10.1007/s00382-007-0234-0 CrossRefGoogle Scholar
  42. Winton M (2000) A reformulated three layer sea ice model. J Atmos Oceanic Technol 17:525–531CrossRefGoogle Scholar
  43. Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP (2009) El Niño in a changing climate. Nature 461:511–514CrossRefGoogle Scholar
  44. Yu J, Kao HY (2007) Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J Geophys Res 112:D13106. doi: 10.1029/2006JD007654 CrossRefGoogle Scholar
  45. Yu JY, Kim ST (2010) Identification of central-Pacific and eastern-Pacific types of El Niño in CMIP3 models. Geophys Res Lett 37:L15705. doi: 10.1029/2010GL044082 Google Scholar
  46. Yu JY, Kim ST (2011) Relationships between extratropical sea level pressure variations and central-Pacific and eastern-Pacific types of ENSO. J Clim 24:708–720. doi: 10.1175/2010JCLI3688.1 CrossRefGoogle Scholar
  47. Yu JY, Kao HY, Lee T (2010) Subtropics-related interannual sea surface temperature variability in the equatorial central Pacific. J Clim 23:2869–2884. doi: 10.1175/2010JCLI3171.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Prasanth A. Pillai
    • 1
  • Suryachandra A. Rao
    • 1
  • Gibies George
    • 1
  • D. Nagarjuna Rao
    • 1
  • S. Mahapatra
    • 1
  • M. Rajeevan
    • 2
  • Ashish Dhakate
    • 1
  • Kiran Salunke
    • 1
  1. 1.Monsoon Mission ProgramIndian Institute of Tropical MeteorologyPuneIndia
  2. 2.Ministry of Earth SciencesGovt. of IndiaNew DelhiIndia

Personalised recommendations