Skip to main content

Advertisement

Log in

Inter-model diversity of Arctic amplification caused by global warming and its relationship with the Inter-tropical Convergence Zone in CMIP5 climate models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Surface-based Arctic amplification (AA) has experienced a remarkable increase in recent decades. Therefore, it is important to understand how Arctic warming might change in response to global warming. By analyzing the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model dataset, we examine how AA correlates with changes in tropical Pacific precipitation in response to global warming. It is found that that the changes in the latitudinal position of the Inter-tropical Convergence Zone (ITCZ) are associated to the simulated AA strength in the CMIP5 climate models. Specifically, AA tends to be stronger (weaker) in models where the ITCZ shifts relatively more northward (southward). Further analysis indicates that the inter-model diversity of AA strength in the CMIP5 climate models is related to the changes in large-scale atmospheric circulation associated with the meridional shift of the ITCZ. These results emphasize a close relationship between AA and changes in tropical Pacific precipitation in response to global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barnes EA, Polvani L (2013) Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J Clim 26:7117–7135. doi:10.1175/jcli-d-12-00536.1

    Article  Google Scholar 

  • Barnes EA, Polvani L (2015) CMIP5 projections of Arctic amplification, of the North American/North Atlantic circulation, and of their relationship. J Clim 28:5254–5271. doi:10.1175/jcli-d-14-00589.1

    Article  Google Scholar 

  • Broccoli AJ, Dahl KA, Stouffer RJ (2006) Response of the ITCZ to Northern Hemisphere cooling. Geophys Res Lett 33:L01702. doi:10.1029/2005GL024546

    Article  Google Scholar 

  • Brown JR, Moise AF, Delage FP (2012) Changes in the South Pacific Convergence Zone in IPCC AR4 future climate projections. Clim Dyn 39:1–19. doi:10.1007/s00382-011-1192-0

    Article  Google Scholar 

  • Cai M, Lu J (2007) Dynamical greenhouse-plus feedback and polar warming amplification. Part II: meridional and vertical asymmetries of the global warming. Clim Dyn 29:375–391. doi:10.1007/s00382-007-0238-9

    Article  Google Scholar 

  • Ceppi P, Hwang Y-T, Liu X, Frierson DMW, Hartmann DL (2013) The relationship between the ITCZ and the Southern Hemispheric eddy-driven jet. J Geophys Res Atmos 118:5136–5146. doi:10.1002/jgrd.50461

    Article  Google Scholar 

  • Chiang JCH, Bitz CM (2005) Influence of high latitude ice cover on the marine intertropical convergence zone. Clim Dyn 25:477–496

    Article  Google Scholar 

  • Chou C, Neelin J, Chen C, Tu J (2009) Evaluating the ‘rich-get-richer’ mechanism in tropical precipitation change under global warming. J Clim 22:1982–2005

    Article  Google Scholar 

  • Delcambre SC, Lorenz DJ, Vimont DJ, Martin JE (2013) Diagnosing Northern Hemisphere jet portrayal in 17 CMIP3 global climate models: twenty-first-century projections. J Clim 26:4930–4946

    Article  Google Scholar 

  • Deser C, Tomas R, Alexander M, Lawrence D (2010) The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J Clim 23:333–351

    Article  Google Scholar 

  • Ding Q, Wallace JM, Battisti DS, Steig EJ, Gallant AJE, Kim H-J, Geng L (2014) Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature 509:209–212. doi:10.1038/nature13260

    Article  Google Scholar 

  • Donohoe A, Marshall J, Ferreira D, McGee D (2013) The relationship between ITCZ location and cross-equatorial atmospheric heat transport: from the seasonal cycle to the Last Glacial Maximum. J Clim 26:3597–3618. doi:10.1175/jcli-d-12-00467.1

    Article  Google Scholar 

  • Donohoe A, Marshall J, Ferreira D, Armour K, McGee D (2014) The interannual variability of tropical precipitation and interhemispheric energy transport. J Clim 27:3377–3392. doi:10.1175/jcli-d-13-00499.1

    Article  Google Scholar 

  • Francis JA, Chan W, Leathers DJ, Miller JR, Veron DE (2009) Winter Northern Hemisphere weather patterns remember summer Arctic sea ice extent. Geophys Res Lett 36:L07503. doi:10.1029/2009GL037274

    Article  Google Scholar 

  • Frierson DMW, Hwang Y-T (2012) Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J Clim 25:720–733. doi:10.1175/JCLI-D-11-00116.1

    Article  Google Scholar 

  • Fyfe JC, von Salzen K, Gillett NP, Arora VK, Flato GM, McConnell JR (2013) One hundred years of Arctic surface temperature variation due to anthropogenic influence. Nat Sci Rep. doi:10.1038/srep2645

    Google Scholar 

  • Graversen RG, Mauritsen T, Tjernstrom M, Kallen E, Svensson G (2008) Vertical structure of recent Arctic warming. Nature 451(7174):53–56. doi:10.1038/nature06502

    Article  Google Scholar 

  • Ham Y-G, Kug J-S (2014) Effects of Pacific Intertropical Convergence Zone precipitation bias on ENSO phase transition. Environ Res Lett 9:064008. doi:10.1088/1748-9326/9/6/064008

    Article  Google Scholar 

  • Ham Y-G, Kug J-S (2015) Improvement of ENSO simulation based on intermodel diversity. J Clim 28:998–1015. doi:10.1175/JCLI-D-14-00376.1

    Article  Google Scholar 

  • Harvey BJ, Shaffrey LC, Woollings TJ (2013) Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Clim Dyn 43:1–12. doi:10.1007/s00382-013-1883-9

    Google Scholar 

  • Harvey BJ, Shaffrey LC, Woollings TJ (2015) Deconstructing the climate change response of the Northern Hemisphere wintertime storm tracks. Clim Dyn 45:2847–2860. doi:10.1007/s00382-015-2510-8

    Article  Google Scholar 

  • Hirota N, Takayabu YN (2013) Reproducibility of precipitation distribution over the tropical oceans in CMIP5 multi-climate models compared to CMIP3. Clim Dyn 41:2909–2920. doi:10.1007/s00382-013-1839-0

    Article  Google Scholar 

  • Hirota N, Takayabu YN, Watanabe M, Kimoto M (2011) Precipitation reproducibility over tropical oceans and its relationship to the double ITCZ problem in CMIP3 and MIROC5 climate models. J Clim 24:4859–4873

    Article  Google Scholar 

  • Honda M, Inoue J, Yamane S (2009) Influence of low Arctic sea ice minima on anomalously cold Eurasian winters. Geophys Res Lett 36:L08707. doi:10.1029/2008GL037079

    Article  Google Scholar 

  • Kang SM, Held IM, Frierson DMW, Zhao M (2008) The response of the ITCZ to extratropical forcing: idealized slab ocean experiments with a GCM. J Clim 21:3521–3532. doi:10.1175/2007JCLI2146.1

    Article  Google Scholar 

  • Kang SM, Frierson DMW, Held IM (2009) The tropical response to extratropical thermal forcing in an idealized GCM: the importance of radiative feedbacks and convective parameterization. J Atmos Sci 66:2812–2827

    Article  Google Scholar 

  • Kim B-M, Son S-W, Min S-K, Jeong J-H, Kim S-J, Zhang X, Shim T, Yoon J-H (2014) Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat Commun 5:4646. doi:10.1038/ncomms5646

    Article  Google Scholar 

  • Koenigk T et al (2013) Arctic climate change in 21st century CMIP5 simulations with EC-Earth. Clim Dyn 40:2719–2743. doi:10.1007/s00382-012-1505-y

    Article  Google Scholar 

  • Kosaka Y, Xie S-P (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407. doi:10.1038/nature12534

    Article  Google Scholar 

  • Krishnamurti TN, Krishnamurti R, Das S, Kumar V, Jayakumar A, Simon A (2015) A pathway connecting the monsoonal heating to the rapid Arctic ice melt. J Atmos Sci 72:5–34. doi:10.1175/jas-d-14-0004.1

    Article  Google Scholar 

  • Kug J-S, Jin F-F, Park J, Ren H-L, Kang I-S (2010) A general rule for synoptic-eddy feedback onto the low-frequency flow. Clim Dyn 35:1011–1026. doi:10.1007/s00382-009-0606-8

    Article  Google Scholar 

  • Lee S (2014) A theory for polar amplification from a general circulation perspective. Asia-Pac J Atmos Sci 50:31–43. doi:10.1007/s13143-014-0024-7

    Article  Google Scholar 

  • Lee S, Feldstein SB, Pollard D, White TS (2011a) Do planetary wave dynamics contribute to equable climates? J Clim 24:2391–2404. doi:10.1175/2011jcli3825.1

    Article  Google Scholar 

  • Lee S, Gong T, Johnson N, Feldstein SB, Pollard D (2011b) On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J Clim 24:4350–4367

    Article  Google Scholar 

  • Li G, Xie S-P (2014) Tropical biases in CMIP5 multimodel ensemble: the excessive equatorial Pacific cold tongue and double ITCZ problems. J Clim 27:1765–1780. doi:10.1175/jcli-d-13-00337.1

    Article  Google Scholar 

  • Lorenz DJ, DeWeaver ET (2007) Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J Geophys Res 112:D10119. doi:10.1029/2006JD008087

    Article  Google Scholar 

  • Ma J, Xie S-P (2013) Regional patterns of sea surface temperature change: a source of uncertainty in future projections of precipitation and atmospheric circulation. J Clim 26:2482–2501. doi:10.1175/JCLI-D-12-00283.1

    Article  Google Scholar 

  • Manzini E et al (2014) Northern winter climate change: assessment of uncertainty in CMIP5 projections related to stratosphere-troposphere coupling. J Geophys Res 119:7979–7998. doi:10.1002/2013jd021403

    Article  Google Scholar 

  • Massonnet F, Fichefet T, Goosse H, Bitz CM, Philippon-Berthier G, Holland MM, Barriat P-Y (2012) Constraining projections of summer Arctic sea ice. The Cryosphere 6:1383–1394. doi:10.5194/tc-6-1383-2012

    Article  Google Scholar 

  • Overland JE, Wang M (2010) Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus 62A:1–9

    Article  Google Scholar 

  • Overland JE, Wood K, Wang M (2011) Warm Arctic-cold continents: climate impacts of the newly open Arctic sea. Polar Res 30:15787. doi:10.3402/polar.v30i0.15787

    Article  Google Scholar 

  • Overland JE, Wang M, Walsh JE, Stroeve JC (2013) Future Arctic climate changes: adaptation and mitigation time scales. Earth’s Future. doi:10.1002/2013EF000162

    Google Scholar 

  • Park D-SR, Lee S, Feldstein SB (2015) Attribution of the recent winter sea ice decline over the Atlantic sector of the Arctic Ocean. J Clim 28:4027–4033. doi:10.1175/jcli-d-15-0042.1

    Article  Google Scholar 

  • Perlwitz J, Hoerling M, Dole R (2015) Arctic tropospheric warming: causes and linkages to lower latitudes. J Clim 28:2154–2167. doi:10.1175/JCLI-D-14-00095.1

    Article  Google Scholar 

  • Screen JA (2014) Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat Clim Change 4:577–582. doi:10.1038/NCLIMATE2268

    Article  Google Scholar 

  • Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464(7293):1334–1337. doi:10.1038/nature09051

    Article  Google Scholar 

  • Screen JA, Simmonds I (2013a) Exploring links between Arctic amplification and mid-latitude weather. Geophys Res Lett 40:959–964. doi:10.1002/grl.50174

    Article  Google Scholar 

  • Screen JA, Simmonds I (2013b) Caution needed when linking weather extremes to amplified planetary waves. Proc Nat Acad Sci USA 110:E2327. doi:10.1073/pnas.1304867110

    Article  Google Scholar 

  • Screen JA, Deser C, Simmonds I (2012) Local and remote controls on observed Arctic warming. Geophys Res Lett 39:L10709. doi:10.1029/2012GL051598

    Article  Google Scholar 

  • Screen JA, Deser C, Simmonds I, Tomas R (2014) Atmospheric impacts of Arctic sea-ice loss, 1979–2009: separating forced change from atmospheric internal variability. Clim Dyn 43:333–344. doi:10.1007/s00382-013-1830-9

    Article  Google Scholar 

  • Seager R, Naik N, Vecchi GA (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim 23:4651–4668

    Article  Google Scholar 

  • Serreze MC, Barrett AP, Stroeve JC, Kindig DN, Holland MM (2009) The emergence of surface-based Arctic amplification. Cryosphere 3:11–19

    Article  Google Scholar 

  • Simmonds I (2015) Comparing and contrasting the behavior of Arctic and Antarctic sea ice over the 35 year period 1979–2013. Ann Glaciol. doi:10.3189/2015AoG69A909

    Google Scholar 

  • Simmonds I, Govekar PD (2014) What are the physical links between Arctic sea ice loss and Eurasian winter climate? Environ Res Lett 9:101003. doi:10.1088/1748-9326/9/10/101003

    Article  Google Scholar 

  • Stroeve JC, Kattsov V, Barrett A, Serreze M, Pavlova T, Holland M, Meier WN (2012) Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett 39:L16502. doi:10.1029/2012GL052676

    Article  Google Scholar 

  • Stroeve J, Barrett A, Serreze M, Schweiger A (2014) Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness. Cryosphere 8:1839–1854. doi:10.5194/tc-8-1839-2014

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Voigt A, Bony S, Dufresne J-L, Stevens B (2014) Radiative impact of clouds on the shift of the Intertropical Convergence Zone. Geophys Res Lett 41:4308–4315

    Article  Google Scholar 

  • Wang M, Overland JE (2012) A sea ice free summer Arctic within 30 years: an update from CMIP5 models. Geophys Res Lett 39:L18501. doi:10.1029/2012GL052868

    Google Scholar 

  • Watanabe M, Kamae Y, Kimoto M (2014) Robust increase of the equatorial Pacific rainfall and its variability in a warmed climate. Geophys Res Lett 41:3227–3232. doi:10.1002/2014GL059692

    Article  Google Scholar 

  • Woollings T (2008) Vertical structure of anthropogenic zonal-mean atmospheric circulation change. Geophys Res Lett 35:L19702. doi:10.1029/2008GL034883

    Article  Google Scholar 

  • Xie S-P et al (2010) Global warming pattern formation: sea surface temperature and rainfall. J Clim 23:966–986

    Article  Google Scholar 

  • Xu J, Powell AM Jr, Zhao L (2013) Intercomparison of temperature trends in IPCC CMIP5 simulations with observations, reanalyses and CMIP3 models. Geosci Model Dev 6:1705–1714. doi:10.5194/gmd-6-1705-2013

    Article  Google Scholar 

  • Yim BY, Min HS, Kug JS (2016) Inter-model diversity in jet stream changes and its relation to Arctic climate in CMIP5. Clim Dyn 47:235–248. doi:10.1007/s00382-015-2833-5

    Article  Google Scholar 

  • Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32:L18701. doi:10.1029/2005GL023684

    Article  Google Scholar 

  • Yoshimori M, Broccoli AJ (2008) Equilibrium response of an atmosphere–mixed layer ocean model to different radiative forcing agents: global and zonal mean response. J Clim 21:4399–4423

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP, the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. S.W.Y. is supported by the National Research Fund of Korea Grant funded by the Korean Government (MEST) (NRF-2009-C1AAA001-2009-0093042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Wook Yeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yim, B.Y., Yeh, SW. & Kug, JS. Inter-model diversity of Arctic amplification caused by global warming and its relationship with the Inter-tropical Convergence Zone in CMIP5 climate models. Clim Dyn 48, 3799–3811 (2017). https://doi.org/10.1007/s00382-016-3303-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3303-4

Keywords

Navigation