Abstract
A high resolution global ocean–sea ice model is employed to investigate the impacts of open-ocean deep convection on coastal and bottom water temperature in the Weddell Sea. The imposed strong and persistent cyclonic wind forcing and the large loss of bottom water weaken the stratification and eventually trigger the occurrence of open-ocean deep convection in the southern limb of the Weddell Gyre in this model. The production rate of the bottom water induced by the deep convection is estimated to be about 5 Sv (1 Sv = 106 m3/s) for a polynya with a similar size to that of the observed Weddell Polynya in the mid-1970s. The cooling induced by deep convection at mid-depth is transported towards the shelf regions by standing meanders or eddies to affect the basal melting of ice shelves, and is transported westward by an intensified slope current; interior coastal temperature in regions with a broader continental shelf is less affected by the deep convection, as the intensified slope current acts to suppress heat exchanges across the shelf break. Also, the deep convection causes warming in the Weddell bottom water around the convection site, when the simulated polynya size is similar to that of the observed Weddell Polynya in the mid-1970s. This finding sheds light on the observed non-monotonic decadal change (cooling between 1984–1992 and warming between 1998–2008) in the Weddell bottom water temperature. When the simulated polynya further develops into a large size across the Weddell Sea, the sustained broad deep convection causes large cooling in the bottom water in the western Weddell Sea and warming in the eastern Weddell Sea, with the bottom water temperature also being strongly modulated by a greatly intensified Weddell Gyre.
Similar content being viewed by others
References
Akitomo K (1999) Open-ocean deep convection due to thermobaricity: 1. Scaling argument. J Geophys Res 104:5225–5234
Alverson K, Owens WB (1996) Topographic preconditioning of open-ocean deep convection. J Phys Oceanogr 26:2196–2213
Azaneu M, Kerr R, Mata MM (2014) Assessment of the representation of Antarctic Bottom Water properties in the ECCO2 reanalysis. Ocean Sci 10:923–946
Beckmann A, Timmermann R, Pereira AF, Mohn C (2001) The effect of flow at Maud Rise on the sea ice cover: numerical experiments. Ocean Dyn 52:11–25
Carsey FD (1980) Microwave observations of the Weddell Polynya. Mon Weather Rev 108:2032–2044
Chavanne CP, Heywood K, Nicholls K, Fer I (2010) Observations of the Antarctic slope undercurrent in the southeastern Weddell Sea. Geophys Res Lett 37:L13601. doi:10.1029/2010GL043603
Cheon WG, Park YG, Toggweiler JR, Lee SK (2014) The relationship of Weddell Polynya and open-ocean deep convection to the Southern Hemisphere westerlies. J Phys Oceanogr 44:694–713
Comiso JC, Gordon AL (1987) Recurring polynyas over the Cosmonaut Sea and the Maud Rise. J Geophys Res 92:2819–2833
Cunningham SA, Alderson SG, King BA, Brandon MA (2003) Transport and variability of the Antarctic circumpolar current in Drake passage. J Geophys Res 108:8084. doi:10.1029/2001JC001147
de Lavergne C, Palter JB, Galbraith ED, Bernardello R, Marinov I (2014) Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat Clim Change 4:278–282. doi:10.1038/NCLIMATE2132
Depoorter MA, Bamber JL, Griggs JA, Lenaerts JTM, Ligtenberg SRM, van den Broeke MR, Moholdt G (2013) Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502:89–92. doi:10.1038/nature12567
Fahrbach E, Hoppema M, Rohardt G, Boebel O, Klatt O, Wisotzki A (2011) Warming of deep and abyssal water masses along the Greenwich meridian on decadal time scales: the Weddell gyre as a heat buffer. Deep Sea Res Part II 58:2509–2523. doi:10.1016/j.dsr2.2011.06.007
Gille ST (2002) Warming of the Southern Ocean since the 1950s. Science 295:1275–1277
Gordon AL (1978) Deep Antarctic convection west of Maud Rise. J Phys Oceanogr 8:600–612
Gordon AL (1982) Weddell deep water variability. J Mar Res 40:199–217
Gordon AL (2014) Southern Ocean polynya. Nat Clim Change 4:249–250
Gordon AL, Comiso JC (1988) Polynyas in the Southern Ocean. Sci Am 256:90–97
Gordon AL, Huber BA (1990) Southern Ocean winter mixed layer. J Geophys Res 95:11655–11672
Gordon AL, Visbeck M, Comiso JC (2007) A possible link between the Weddell Polynya and the Southern annular mode. J Clim 20:2558–2571
Heuzé C, Heywood KJ, Stevens DP, Ridley JK (2013) Southern Ocean bottom water characteristics in CMIP5 models. Geophys Res Lett 40:1409–1414
Heywood KJ et al (2014) Ocean processes at the Antarctic continental slope. Philos Trans R Soc A 372:20130047
Hirabara M, Tsujino H, Nakano H, Yamanaka G (2012) Formation mechanism of the Weddell Polynya and the impact on the global abyssal ocean. J Oceanogr 68:771–796
Holland DM (2001) Transient sea-ice polynya forced by oceanic flow variability. Prog Oceanogr 28:403–460
Hughes CW, de Cuevas BA (2001) Why western boundary currents in realistic oceans are inviscid: a link between form stress and bottom pressure torques. J Phys Oceanogr 31:2871–2885
Jackett DR, MacDougall TJ (1997) A neutral density variable for the world’s oceans. J Phys Oceanogr 27:237–263
Jacobs SS (1991) On the nature and significance of the Antarctic Slope Front. Mar Chem 35:9–24. doi:10.1016/S0304-4203(09)90005-6
Karoly DJ (2003) Ozone and climate change. Science 302:236–237
Killworth PD (1979) On “Chimney” formation in the ocean. J Phys Oceanogr 9:531–554
Kjellsson J, Holland PR, Marshall GJ, Mathiot P, Aksenov Y, Coward AC, Bacon S, Megann AP, Ridley JK (2015) Model sensitivity of the Weddell and Ross seas, Antarctica, to vertical mixing and freshwater forcing. Ocean Model 94:141–152. doi:10.1016/j.ocemod.2015.08.003
Klatt O, Fahrbach E, Hoppema M, Rohardt G (2005) The transport of the Weddell Gyre across the prime meridian. Deep Sea Res Part II 52:513–528
Kusahara K, Hasumi H (2013) Modeling Antarctic ice shelf responses to future climate changes and impacts on the ocean. J Geophys Res 118:2454–2475. doi:10.1002/jgrc.20166
Latif M, Martin T, Park W (2013) Southern Ocean sector centennial climate variability and recent decadal trends. J Clim 26:7767–7782. doi:10.1175/JCLI-D-12-00281.1
Lindsay RW, Holland DM, Woodgate RA (2004) Halo of low ice concentration observed over the Maud rise seamount. Geophys Res Lett 31:L13302. doi:10.1029/2004GLO19831
Liu Y et al (2015) Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves. Proc Natl Acad Sci 112:3263–3268. doi:10.1073/pnas.1415137112
Losch M, Menemenlis D, Heimbach P, Campin J, Hill C (2010) On the formulation of sea-ice models. Part 1: effects of different solver implementations and parameterizations. Ocean Model 33:129–144
Marshall J, Adcroft A, Hill C et al (1997a) A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J Geophys Res 102:5753–5766
Marshall J, Hill C, Perelman L, Adcroft A (1997b) Hydrostatic, quasihydrostatic, and nonhydrostatic ocean modeling. J Geophys Res 102:5733–5752
Martin T, Park W, Latif M (2013) Multi-centennial variability controlled by Southern Ocean convection in the Kiel climate model. Clim Dyn 40:2005–2022
Mathiot P, Goosse H, Fichefet T, Barnier B, Gallee H (2011) Modelling the seasonal variability of the Antarctic slope current. Ocean Sci Eur Geosci Union 7:445–532
Mayewski PA et al (2009) State of the Antarctic and Southern Ocean climate system. Rev Geophys 47:RG1003. doi:10.1029/2007RG000231
Meier WN, Gallaher D, Campbell GG (2013) New estimates of Arctic and Antarctic sea ice extent during September 1964 from recovered Nimbus I satellite imagery. Cryosphere 7:699–705. doi:10.5194/tc-7-699-2013
Menemenlis D, Campin JM, Heimbach P et al (2008) ECCO2: high resolution global ocean and sea ice data synthesis. Mercat Ocean Q Newsl 31:13–21
Orsi AH, Johnson GC, Bullister JL (1999) Circulation, mixing, and production of Antarctic Bottom Water. Prog Oceanogr 43:55–109
Orsi AH, Smethie Jr WM, Bullister JL (2002) On the total input of Antarctic Waters to the deep ocean: A preliminary estimate from chlorofluorocarbon measurements. J Geophys Res 107(C8):3122. doi:10.1029/2001JC000976
Ou HW (1991) Some effects of a seamount on oceanic flows. J Phys Oceanogr 21:1835–1845
Parkinson CL (1983) On the development and cause of the Weddell Polynya in a sea ice simulation. J Phys Oceanogr 13:501–511
Pritchard HD, Ligtenberg SRM, Fricker HA, Vaughan DG, van den Broeke MR, Padman L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484:502–505
Purkey S, Johnson G (2012) Global contraction of Antarctic Bottom water between the 1980s and 2000s. J Clim 25:5830–5844
Purkey S, Johnson G (2013) Antarctic bottom water warming and freshening: contributions to sea level rise, ocean freshwater budgets, and global heat gain. J Clim 26:6105–6122
Rignot E, Casassa G, Gogineni P, Krabill W, Rivera A, Thomas R (2004) Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys Res Lett 31:L18401. doi:10.1029/2004GL020697
Rignot E, Jacobs SS, Mouginot J, Scheuchl B (2013) Ice shelf melting around Antarctica. Science 341(6143):266–270
Robertson R, Visbeck M, Gordon AL, Fahrbach E (2002) Longterm temperature trends in the deep waters of the Weddell Sea. Deep Sea Res Part II 49:4791–4806
Schmidtko S, Heywood KJ, Thompson AF, Aoki S (2014) Multidecadal warming of Antarctic waters. Science 346:1227–1231. doi:10.1126/science.1256117
Smedsrud LH, Jenkins A, Holland D, Nøst O (2006) Modeling ocean processes below Fimbulisen, Antarctica. J Geophys Res 111:C01007. doi:10.1029/2005JC002915
Spence P et al (2014) Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys Res Lett 41:4601–4610
Stewart AL, Thompson AF (2015) Eddy-mediated transport of warm Circumpolar Deep Water across the Antarctic Shelf Break. Geophys Res Lett 42:432–440. doi:10.1002/2014GL062281
St-Laurent P, Klinck JM, Dinniman MS (2013) On the role of coastal troughs in the circulation of warm circumpolar deep water on Antarctic Shelves. J Phys Oceanogr 43(1):51–64
Wang Z (2013) On the response of Southern Hemisphere subpolar gyres to climate change in coupled climate models. J Geophys Res Oceans 118:1070–1086. doi:10.1002/jgrc.20111
Wang Z, Meredith MP (2008) Density-driven Southern Hemisphere subpolar gyres in coupled climate models. Geophys Res Lett. doi:10.1029/2008GL034344
Wang Z, Kuhlbrodt T, Meredith MP (2011) On the response of the Antarctic circumpolar current transport to climate change in coupled climate models. J Geophys Res. doi:10.1029/2010JC006757
Wang Z, Turner J, Sun B, Li B, Liu C (2014) Cyclone-induced rapid creation of extreme Antarctic sea ice conditions. Sci Rep 4:5317. doi:10.1038/srep05317
Wang Z, Zhang X, Guan Z, Sun B, Yang X, Liu C (2015) An atmospheric origin of the multi-decadal bipolar seesaw. Sci Rep 5:8909. doi:10.1038/srep08909
Wüst G (1928) Der Ursprung der Atlantischen Tiefenwasser. Jubiläums-Sonderband Z Ges Erdkunde, Berlin
Zanowski H, Hallberg R, Sarmiento JL (2015) Abyssal Ocean warming and salinification after Weddell Polynyas in the GFDL CM2G coupled climate model. J Phys Oceanogr 45:2755–2772
Zwally HJ, Gloerson P (1977) Passive microwave images of the polar regions and research applications. Polar Rec 18:431–450
Acknowledgments
Z. Wang was supported by the China National Natural Science Foundation (NSFC) Project (41276200), by the Global Change Research Program of China (2015CB953904), by the Special Program for China Meteorology Trade (Grant No. GYHY201306020), by the Program for Innovation Research and Entrepreneurship team in Jiangsu Province, and by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). C. Liu is supported by the NSFC project (41306208). This paper is ESMC contribution No. 112.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, Z., Wu, Y., Lin, X. et al. Impacts of open-ocean deep convection in the Weddell Sea on coastal and bottom water temperature. Clim Dyn 48, 2967–2981 (2017). https://doi.org/10.1007/s00382-016-3244-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00382-016-3244-y