Climate Dynamics

, Volume 51, Issue 3, pp 1119–1143 | Cite as

Heat and salt redistribution within the Mediterranean Sea in the Med-CORDEX model ensemble

  • J. LlassesEmail author
  • G. Jordà
  • D. Gomis
  • F. Adloff
  • D. Macías
  • A. Harzallah
  • T. Arsouze
  • N. Akthar
  • L. Li
  • A. Elizalde
  • G. Sannino


Characterizing and understanding the basic functioning of the Mediterranean Sea in terms of heat and salt redistribution within the basin is a crucial issue to predict its evolution. Here we quantify and analyze the heat and salt transfers using a simple box model consisting of four layers in the vertical for each of the two (western and eastern) basins. Namely, we box-average 14 regional simulations of the Med-CORDEX ensemble plus a regional and a global reanalysis, computing for each of them the heat and salt exchanges between layers. First, we analyze in detail the mechanisms behind heat and salt redistribution at different time scales from the outputs of a single simulation (NEMOMED8). We show that in the western basin the transfer between layer 1 (0–150 m) and layer 2 (150–600 m) is upwards for most models both for heat and salt, while in the eastern basin both transfers are downwards. A feature common to both basins is that the transports are smaller in summer than in winter due to the enhanced stratification, which dampen the mixing between layers. From the comparison of the 16 simulations we observe that the spread between models is much larger than the ensemble average for the salt transfer and for the heat transfer between layer 1 and layer 2. At lower layers (below 600 m) there is a set of models showing a good agreement between them, while others are not correlated with any other. The mechanisms behind the ensemble spread are not straightforward. First, to have a coarse resolution prevents the model to correctly represent the heat and salt redistribution in the basin. Second, those models with a very different initial stratification also show a very different redistribution, especially at intermediate and deep layers. Finally, the assimilation of data seems to perturb the heat and salt redistribution. Besides this, the differences among regional models that share similar spatial resolution and initial conditions are induced by more subtle mechanisms which depend on the variable and process analyzed. In order to reduce the uncertainties in the Mediterranean regional climate projections further modelling studies and better observational datasets are needed to constrain the main sources of discrepancies among models. In the absence of those, an ensemble modelling approach as the one followed in the Med-CORDEX initiative seems to be the best solution to evaluate model uncertainties into the future climate projections.


Heat fluxes Salt fluxes Mediterranean Sea Ocean regional climate models Med-CORDEX 



This work is a contribution to the HyMeX and Med-CORDEX programs through the CLIMPACT (CGL2014-54246-C2-1-R) and CLIFISH (CTM2015-66400-C3-2-R) projects funded by the Spanish Ministerio de Economía y Competitividad (MINECO). G. Jordà acknowledges a Ramón y Cajal contract (RYC-2013-14714) funded by MINECO and the Regional Government of the Balearic Islands. Finally, we are very grateful to the editor, to K. Beranger and to an anonymous reviewer for their detailed revision of the paper and the constructive comments, which has improved the quality of the manuscript.

Supplementary material

382_2016_3242_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2052 kb)


  1. Adani M, Dobricic S, Pinardi N (2011) Quality assessment of a 1985–2007 Mediterranean Sea reanalysis. J Atmos Ocean Technol 28:569–589. doi: 10.1175/210JTECHO798.1 CrossRefGoogle Scholar
  2. Akhtar N, Brauch J, Dobler A, Béranger K, Ahrens B (2014) Medicanes in an ocean-atmosphere coupled regional climate model. Nat Hazards Earth Syst Sci 14:2189–2201. doi: 10.5194/nhess-14-2189-2014 CrossRefGoogle Scholar
  3. Alioua M, Harzallah A (2008) Imbrication d’un modèle de circulation des eaux près des côtes tunisiennes dans un modèle de circulation de la Mer Méditerranée. Bull Inst Nat Sci Tech Mer de Salammbô 35:169–176Google Scholar
  4. Arsouze T, Beuvier J, Béranger K, Somot S, Lebeaupin Brossier C, Bourdallé-Badie R, Sevault F, Drillet Y (2013) Sensibility analysis of the Western Mediterranean Transition inferred by four companion simulations, CIESM, Marseille, France, 27 October–1 NovemberGoogle Scholar
  5. Artale V, Calamanti S, Carillo A, Dell’Aquila A, Herrman M, Pisacane G, Ruti PM, Sannino G, Struglia MV, Giorgi F, Bi X, Pal JS, Rauscher S (2010) An atmosphere–ocean regional climate model for the Mediterranean area: assessment of a present climate simulation. Clim Dyn 35:721–740. doi: 10.1007/s00382-009-0691-8 CrossRefGoogle Scholar
  6. Astraldi M, Balopoulos S, Candela J, Font J, Gacic M, Gasparini GP, Manca B, Theocharis A, Tintore J (1999) The role of straits and channels in understanding the characteristics of Mediterranean circulation. Progr Oceanogr 44(1–3):65–108CrossRefGoogle Scholar
  7. Beckers J-M, Rixen M, Brasseur P, Brankart J-M, Elmoussaoui A, Crépon M, Herbaut Ch, Martel F, Van den Berghe F, Mortier L, Lascartos A, Drakopoulos P, Korres G, Nittis K, Pinardi N, Masetti E, Castellari S, Carini P, Tintoré J, Álvarez A, Monserrat S, Parrilla D, Vautard R, Speich S (2002) Model intercomparison in the Mediterranean: MEDMEX simulations of the seasonal cycle. J Mar Syst 33–34:215–251CrossRefGoogle Scholar
  8. Béranger K, Drillet Y, Houssais M-N, Testor P, Bourdallé-Badie R, Alhammoud B, Bozec A, Mortier L, Bouruet-Aubertot P, Crépon M (2010) Impact of the spatial distribution of the atmospheric forcing on water mass formation in the Mediterranean Sea. J Geophys Res 115:C12041. doi: 10.1029/2009JC005648 CrossRefGoogle Scholar
  9. Béthoux J-P, Gentili B, Tailliez D (1998) Warming and freshwater budget change in the Mediterranean since the 1940s, their possible relation to the greenhouse effect. Geophys Res Lett 25(7):1023–1026CrossRefGoogle Scholar
  10. Beuvier J, Sevault F, Herrmann M, Kontoyiannis H, Ludwig W, Rixen M, Stanev E, Béranger K, Somot S (2010) Modeling the Mediterranean Sea interannual variability during 1961–2000: focus on the Eastern Mediterranean Transient. J Geophys Res 115:C08017. doi: 10.1029/2009JC005950 CrossRefGoogle Scholar
  11. Beuvier J, Béranger K, Lebeaupin Brossier C, Somot S, Drillet Y, Bourdallé-Badie R, Ferry F, Lyard F (2012) Spreading of the Western Mediterranean Deep Water after winter 2005: time scales and deep cyclone transport. J Geophys Res 117:C07022. doi: 10.1029/2011JC007679 CrossRefGoogle Scholar
  12. Beuvier et al (2012b) Newsletter Mercator #46. MED12, Oceanic component for the modeling of the regional Mediterranean Earth system, MED12-long simulation 1958-2011 recently completed until 2013Google Scholar
  13. Borghini M, Bryden H, Schroeder K, Sparnocchia S, Vetrano A (2014) The Mediterranean is becoming saltier. Ocean Sci 10:693–700. doi: 10.5194/os-10-693-2014 CrossRefGoogle Scholar
  14. Brankart J-M, Brasseur P (1998) The general circulation in the Mediterranean Sea: a climatological approach. J Mar Syst 18:41–70CrossRefGoogle Scholar
  15. Brasseur P, Beckers J-M, Brankart J-M, Schoenauen R (1996) Seasonal temperature and salinity fields in the Mediterranean Sea: climatological analyses of an historical data set. Deep-Sea Res 43(2):159–192CrossRefGoogle Scholar
  16. Bryden HL, Kinder TH (1991) Steady two-layer exchange through the Strait of Gibraltar. Deep Sea Res Part A 38(1):S445–S463. doi: 10.1016/S0198-0149(12)80020-3 CrossRefGoogle Scholar
  17. Bunker AF, Charnock H, Goldsmith RA (1982) A note on the heat balance of the Mediterranean and Red Seas. J Mar Res 40(Supplement):73–84Google Scholar
  18. Carillo A, Sannino G, Artale V, Ruti P, Calmanti S, Dell’Aquila A (2012) Steric sea level rise over the Mediterranean Sea: present climate and scenario simulations. Clim Dyn  10.1007/s00382-012-1369-1. ISSN: 09307575
  19. Carton J, Gieses B (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136:2999–3017. doi: 10.1175/2007MWR1978.1 CrossRefGoogle Scholar
  20. Daget N, Weaver AT, Balmaseda MA (2009) Ensemble estimation of background-error variances in a three-dimensional variational data assimilation system for the global ocean. Q J R Meteorol Soc 135:1071–1094. doi: 10.1002/qj.412 CrossRefGoogle Scholar
  21. Dee DP, Balmaseda G, Balsamo G, Engelen R, Simmons AJ, Thépaut JN (2014) Toward a consistent reanalysis of the climate system. Bull Am Meteorol Soc 95:1235–1248. doi: 10.1175/BAMS-D-13-00043.1 CrossRefGoogle Scholar
  22. Drevillon M, Bourdalle-Badie R, Derval C, Drillet Y, Lellouche JM, Remy E, Tranchant B, Benkiran M, Greiner E, Guinehut S, Verbrugge N, Garric G, Testut CE, Laborie M, Nouel L, Bahurel P, Bricaud C, Crosnier L, Dombrosky E, Durand E, Ferry N, Hernandez F, Le Galloudec O, Messal F, Parent L (2008) The GODAE/MercatorOcean global ocean forecasting system: results, applications and prospects. J Oper Oceanogr 1(1):51–57CrossRefGoogle Scholar
  23. Elizalde A, Sein D, Mikolajewicz U, Jacob D (2010) Technical report: regional atmosphere-ocean-hydrology coupled climate model. Max Planck Institute for MeteorologyGoogle Scholar
  24. Gualdi S, Somot S, Li L, Artale V, Adani M, Bellucci A, Braun S, Calmati A, Carillo A, Dell’Aquila A, Déqué M, Dubois C, Elizalde A, Harzallah A, Jacob D, L’Hévéder B, May W, Oddo P, Ruti P, Sanna A, Sannino G, Scoccimarro E, Sevault F, Navarra A (2013) Regional climate change projections with realistic representation of the Mediterranean Sea. Am Meteorol Soc. doi: 10.1175/BAMS-D-11-00136.1 Google Scholar
  25. Harzallah A, Alioua M, Li L (2014) Mass exchange at the Strait of Gibraltar in response to tidal and lower frequency forcing as simulated by a Mediterranean Sea model. Tellus A 66:23871. doi: 10.3402/tellusa.v66.23871 CrossRefGoogle Scholar
  26. Herrmann M, Somot S (2008) Relevance of ERA40 dynamical downscaling for modeling deep convection in the North-Western Mediterranean Sea. Geophys Res Lett 35(L04607):1–5. doi: 10.1029/2007GL032669 Google Scholar
  27. Herrmann M, Sevault F, Beuvier J, Somot S (2010) What induced the exceptional 2005 convection event in the northwestern Mediterranean basin? Answers from a modeling study. J Geophys Res 115:C12051. doi: 10.1029/2010JC006162 CrossRefGoogle Scholar
  28. Jordà G, Gomis D (2013) Reliability of the steric and mass components of the Mediterranean sea level as estimated from hydrographic gridded products. Geophys Res Lett 40:3655–3660. doi: 10.1002/grl.50718 CrossRefGoogle Scholar
  29. Lafuente J, Alvarez Fanjul E, Vargas JM, Ratsimandresy AW (2002) Subinertial variability in the flow through the Strait of Gibraltar. J Geophys Res 107(C10):3168. doi: 10.1029/2001JC001104 CrossRefGoogle Scholar
  30. Lebeaupin BC, Béranger K, Deltel C, Drobinski P (2011) The Mediterranean response to different space-time resolution atmospheric forcings using perpetual mode sensitivity simulations. Ocean Model 36:1–25CrossRefGoogle Scholar
  31. Levitus S (1998) NODC World Ocean Atlas 1998 data, report: NOAACIRES Clim. Diag. Cent., Boulder, COGoogle Scholar
  32. Levitus S, Antonov J, Boyer T (2005) Warming of the world ocean, 1955–2003, Geophys. Res Lett 32:02604. doi: 10.1029/2004GL021592 CrossRefGoogle Scholar
  33. Li L, Casado A, Congedi L, Dell’Aquila A, Dubois C, Elizalde A, L’Hévéder B, Lionello P, Sevault F, Somot S, Ruti P, Zampieri M (2012) Modelling of the Mediterranean climate system. Chapter 7 of the MedCLIVAR book. In: Lionello P (ed) The climate of the Mediterranean Region, from the past to the future. Elsevier, Amsterdam, pp 419–448Google Scholar
  34. Llasses J, Jordà G, Gomis D (2015) Skills of different hydrographic networks in capturing changes in the Mediterranean Sea at climate scales. Clim Res 63:1–18. doi: 10.3354/cr01270 CrossRefGoogle Scholar
  35. Macdonald A, Candela J, Bryden H (1994) An estimate of the net heat transport through the Strait of Gibraltar. In: LaViolette PE (ed) Seasonal and interannual variability of the Western Mediterranean Sea, Coastal Estuarine studies, vol 46. American Geophysical Union, pp 13–32Google Scholar
  36. Macías D, García-Gorriz E, Stips A (2013) Understanding the causes of recent warming of Mediterranean Waters. How much could be attributed to climate change? PLoS One 8(11):e81591. doi: 10.1371/journal.pone.0081591 CrossRefGoogle Scholar
  37. Mariotti A, Pan Y, Zeng Y, Alessandri A (2015) Long-term climate change in the Mediterranean region in the midst of decadal variability. Clim Dyn 44:1437–1456. doi: 10.1007/s00382-015-2487-3 CrossRefGoogle Scholar
  38. MEDAR Group (2002) Mediterranean and Black Sea database of temperature, salinity and biochemical parameters and climatological atlas. 4 CD-ROM edited by the European Commission Marine Science and Technology Programme (MAST) and IFREMER.
  39. Millot C (2005) Levantine intermediate water characteristics: an astounding general misunderstanding! Scientia Marina. doi: 10.3989/scimar.03518.13A. ISSN: 0214-8358
  40. Millot C, Taupier-Letage I (2005) Circulation in the Mediterranean Sea. Hdb Environ Chem 5(Part K):29–66. doi: 10.1007/b107143 Google Scholar
  41. Millot C, Candela J, Fuda J-L, Tber Y (2006) Large warming and salinification of the Mediterranean outflow due to changes in its composition. Deep-Sea Res I 53:656–666. doi: 10.1016/j.dsr.2005.12.017 CrossRefGoogle Scholar
  42. Pettenuzzo D, Large G, Pinardi N (2010) On the corrections of ERA-40 surface flux products consistent with the Mediterranean heat and water budgets and the connection between basin surface total heat flux and NAO. J Geophys Res 115:C06022. doi: 10.1029/2009JC00563 CrossRefGoogle Scholar
  43. Pillsbury RD, Barstow D, Bottero JS, Milleiro C, Moore B, Pittock G, Root DC, Simpkins J III, Still RE, Brayden HL (1987) Gibraltar experiment, current measurements in the Strait of Gibraltar, October 1985–October 1986. Oregon State Univ. Data Rep. 87-29, Ref. 139, College of OceanographyGoogle Scholar
  44. Pinardi N, Zavatarelli M, Adani M, Coppini G, Fratianni C, Oddo P, Simoncelli S, Tonani M, Lyubarstev V, Dobricic S, Bonaduce A (2015) Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: a retrospective analysis. Prog Oceanogr 132:318–332. doi: 10.1016/j.pocean.2013.11.003 CrossRefGoogle Scholar
  45. Reynaud T, Legrand P, Mercier H, Barnier B (1998) A new analysis of hydrographic data in the Atlantic and its application to an inverse modelling study. International WOCE Newslette, N. 32, 28. ISSN 1029-1725Google Scholar
  46. Ruti PM, Somot S, Dubois S, Calmanti S, Ahrens B, Alias C, Aznar R, Bartholy J, Bastin S, Béranger K, Brauch J, Calvet JC, Carillo A, Decharme B, Dell’Aquila A, Djurdjevic V, Drobinski P, Elizalde-Arellano A, Gaertner M, Galán del Sastre P, Gallardo C, Giorgi F, Gualdi S, Bellucci A, Harzallah A, Herrmann M, Jacob D, Khodayar S, Krichak S, Lebeaupin C, L’Heveder B, Li L, Liguori G, Lionello P, Onol B, Rajkovic B, Sannino G, Sevault F (2015) MED-CORDEX initiative for the Mediterranean climate studies. BAMS-D-14-00176Google Scholar
  47. Sammartino S, García Lafuente J, Naranjo C, Sánchez Garrido JC, Sánchez Real R, Sánchez Román A (2015) Ten years of marine current measurements in Espartel Sill, Strait of Gibraltar. J Geophys Res Oceans 120:6309–6328. doi: 10.1002/2014JC010674 CrossRefGoogle Scholar
  48. Sánchez-Gómez E, Somot S, Josey A, Dubois C, Elguindi N, Déqué M (2011) Evaluation of Mediterranean Sea water and heat budgets simulated by an ensemble of high resolution regional climate models. Clim Dyn 37:2067–2086. doi: 10.1007/s00382-011-1012-6 CrossRefGoogle Scholar
  49. Sánchez-Román A, Sannino G, García-Lafuente J, Carillo A, Criado-Aldeanueva F (2009) Transport estimates at the western section of the Strait of Gibraltar: a combined experimental and numerical modeling study. J Geophys Res 114:C06002. doi: 10.1029/2008JC005023 CrossRefGoogle Scholar
  50. Sannino G, Garrido JCS, Liberti L, Pratt L (2014) Exchange flow through the Strait of Gibraltar as simulated by a σ-coordinate hydrostatic model and a z-coordinate nonhydrostatic model. The Mediterranean Sea: temporal variability and spatial patterns, pp 25–50. ISBN: 978-111884757-2;978-111884734-3. doi: 10.1002/9781118847572.ch3
  51. Sevault F, Somot S, Beuvier J (2009) A regional version of the NEMO ocean engine on the Mediterranean Sea: NEMOMED8 user’s guide, Note Cent. 107, Groupe de Meteorol. de Grande Echelle et Clim., Cent. Natl. de Rech. Meteorol. Toulouse, FranceGoogle Scholar
  52. Sevault F, Somot S, Alias A, Dubois C, Lebeaupin-Brossier C, Nabat P, Adloff F, Déqué M, Decharme B (2014) A fully coupled Mediterranean regional climat system model: Design and evaluation of the ocean component for the 1980-2002 period. Tellus A 66:23967. doi: 10.3402/tellusa.v66.23967
  53. Soto-Navarro J, Somot S, Sevault F, Beuvier J, Béranger K, Criado-Aldeanueva F, García- Lafuente J (2014) Evaluation of regional ocean circulation models for the Mediterranean Sea at the strait of Gibraltar: volume transport and thermohaline properties of the outflow. Clim Dyn Clim Dyn 44(5):1277–1292Google Scholar
  54. Tziperman E, Speer K (1994) A study of water mass transformation in the Mediterranean Sea: analysis of climatological data and a simple three-box model. Elsevier, Amsterdam; 0377-0256(94) 00389-EGoogle Scholar
  55. Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Da Costa Bechtold V, Fiorino M, Gibson JK, Haseler A, Hernández A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda A, Beljaars ACM, Van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen I, Janssen PAE, Jenne R, McNally AP, Mahfouf J-F, Mocrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • J. Llasses
    • 1
    Email author
  • G. Jordà
    • 1
  • D. Gomis
    • 1
  • F. Adloff
    • 2
  • D. Macías
    • 3
  • A. Harzallah
    • 4
  • T. Arsouze
    • 5
  • N. Akthar
    • 6
  • L. Li
    • 5
  • A. Elizalde
    • 7
  • G. Sannino
    • 8
  1. 1.Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC)EsporlesSpain
  2. 2.CNRM Météo-France/CNRSToulouseFrance
  3. 3.Water Research Unit, Institute for Environment and SustainabilityEuropean Commission, Joint Research CenterIspraItaly
  4. 4.Institut National des Sciences et Technologies de la MerTunisTunisia
  5. 5.Laboratoire de Météorologie DynamiqueCNRS/Ecole Polytechnique/ENS/UPMCPalaiseau Cedex, ParisFrance
  6. 6.Institute for Atmospheric and Environmental SciencesGoethe UniversityFrankfurt/MainGermany
  7. 7.Max Planck Institute for MeteorologyHamburgGermany
  8. 8.ENEA Centro Ricerche CasacciaRomeItaly

Personalised recommendations