Skip to main content

Tracking the delayed response of the northern winter stratosphere to ENSO using multi reanalyses and model simulations

Abstract

The concurrent effects of the El Niño-Southern Oscillation (ENSO) on the northern winter stratosphere have been widely recognized; however, the delayed effects of ENSO in the next winter after mature ENSO have yet to be confirmed in multi reanalyses and model simulations. This study uses three reanalysis datasets, a long-term fully coupled model simulation, and a high-top general circulation model to examine ENSO’s delayed effects in the stratosphere. The warm-minus-cold composite analyses consistently showed that, except those quick-decaying quasi-biennial ENSO events that reverse signs during July–August–September (JAS) in their decay years, ENSO events particularly those quasi-quadrennial (QQ) that persist through JAS, always have a significant effect on the extratropical stratosphere in both the concurrent winter and the next winter following mature ENSO. During the concurrent winter, the QQ ENSO-induced Pacific-North American (PNA) pattern corresponds to an anomalous wavenumber-1 from the upper troposphere to the stratosphere, which acts to intensify/weaken the climatological wave pattern during warm/cold ENSO. Associated with the zonally quasi-homogeneous tropical forcing in spring of the QQ ENSO decay years, there appear persistent and zonally quasi-homogeneous temperature anomalies in the midlatitudes from the upper troposphere to the lower stratosphere until summer. With the reduction in ENSO forcing and the PNA responses in the following winter, an anomalous wavenumber-2 prevails in the extratropics. Although the anomalous wave flux divergence in the upper stratospheric layer is still dominated by wavenumber-1, it is mainly caused by wavenumber-2 in the lower stratosphere. However, the wavenumber-2 activity in the next winter is always underestimated in the model simulations, and wavenumber-1 activity dominates in both winters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Angell JK (1981) Comparison of variations in atmospheric quantities with sea surface temperature variations in the equatorial eastern Pacific. Mon Weather Rev 109:230–243. doi:10.1175/1520-0493(1981)109<0230:coviaq>2.0.co;2

    Article  Google Scholar 

  2. Barnett TP (1991) The interaction of multiple time scales in the tropical climate system. J Clim 4:269–285. doi:10.1175/15200442(1991)004<0269:tiomts>2.0.co;2

    Article  Google Scholar 

  3. Bejarano L, Jin F-F (2008) Coexistence of equatorial coupled modes of ENSO. J Clim 21:3051–3067. doi:10.1175/2007jcli1679.1

    Article  Google Scholar 

  4. Calvo N, Giorgetta MA, Garcia-Herrera R, Manzini E (2009) Nonlinearity of the combined warm ENSO and QBO effects on the Northern Hemisphere polar vortex in MAECHAM5 simulations. J Geophys Res 114:D13019. doi:10.1029/2008jd011445

    Google Scholar 

  5. Calvo N, Garcia RR, Randel WJ, Marsh DR (2010) Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events. J Atmos Sci 67:2331–2340. doi:10.1175/2010jas3433.1

    Article  Google Scholar 

  6. Camp CD, Tung KK (2007) Stratospheric polar warming by ENSO in winter: a statistical study. Geophys Res Lett 34:L14703. doi:10.1029/2006gl028521

    Article  Google Scholar 

  7. Chen W, Takahashi M, Graf H-F (2003) Interannual variations of stationary planetary wave activity in the north winter troposphere and stratosphere and their relations to NAM and SST. J Geophys Res 108:4797. doi:10.1029/2003jd003834

    Google Scholar 

  8. Chen SF, Chen W, Yu B, Graf HF (2013) Modulation of the seasonal footprinting mechanism by the boreal spring Arctic Oscillation. Geophys Res Lett 40:6384–6389. doi:10.1002/2013gl058628

    Article  Google Scholar 

  9. Danabasoglu G, Bates SC, Briegleb BP, Jayne SR, Jochum M, Large WG, Peacock S, Yeager SG (2012) The CCSM4 ocean component. J Clim 25:1361–1389. doi:10.1175/jcli-d-11-00091.1

    Article  Google Scholar 

  10. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  11. Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022. doi:10.1175/1520-0450(1979)018<1016:lfioat>2.0.CO;2

    Article  Google Scholar 

  12. Ebita A, Kobayashi S, Ota Y et al (2011) The Japanese 55-year reanalysis “JRA-55”: an interim report. Sola 7:149–152. doi:10.2151/sola.2011-038

    Article  Google Scholar 

  13. Enfield DB, Mayer DA (1997) Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J Geophys Res 102:929–945. doi:10.1029/96jc03296

    Article  Google Scholar 

  14. Evtushevsky OM, Kravchenko VO, Hood LL, Milinevsky GP (2015) Teleconnection between the central tropical Pacific and the Antarctic stratosphere: spatial patterns and time lags. Clim Dyn 44:1841–1855. doi:10.1007/s00382-014-2375-2

    Article  Google Scholar 

  15. Eyring V, Waugh DW, Bodeker GE et al (2007) Multimodel projections of stratospheric ozone in the 21st century. J Geophys Res 112:D16303. doi:10.1029/2006jd008332

    Article  Google Scholar 

  16. Eyring V, Shepherd T, Waugh D (eds) (2010a) Stratospheric processes and their role in climate: SPARC report on the evaluation of chemistry-climate models. WCRP-132, WMO/TD-1526, SPARC Rep. 5, p 408. http://www.sparc-climate.org/publications/sparc-reports/

  17. Eyring V, Cionni I, Bodeker GE et al (2010b) Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. Atmos Chem Phys 10:9451–9472. doi:10.5194/acp-10-9451-2010

    Article  Google Scholar 

  18. Garcia RR, Marsh DR, Kinnison DE, Boville BA, Sassi F (2007) Simulation of secular trends in the middle atmosphere, 1950–2003. J Geophys Res 112:D09301. doi:10.1029/2006jd007485

    Google Scholar 

  19. García-Herrera R, Calvo N, Garcia RR, Giorgetta MA (2006) Propagation of ENSO temperature signals into the middle atmosphere: a comparison of two general circulation models and ERA-40 reanalysis data. J Geophys Res 111:D06101. doi:10.1029/2005jd006061

    Google Scholar 

  20. Garfinkel CI, Hartmann DL (2007) Effects of the El Niño-Southern oscillation and the quasi-biennial oscillation on polar temperatures in the stratosphere. J Geophys Res 112:D19112. doi:10.1029/2007jd008481

    Article  Google Scholar 

  21. Garfinkel CI, Hartmann DL (2008) Different ENSO teleconnections and their effects on the stratospheric polar vortex. J Geophys Res 113:D18114. doi:10.1029/2008jd009920

    Article  Google Scholar 

  22. Garfinkel CI, Hurwitz MM, Waugh DW, Butler AH (2012) Are the teleconnections of Central Pacific and Eastern Pacific El Niño distinct in boreal wintertime? Clim Dyn 41:1835–1852. doi:10.1007/s00382-012-1570-2

    Article  Google Scholar 

  23. Gent PR, Danabasoglu G, Donner LJ et al (2011) The community climate system model version 4. J Clim 24:4973–4991. doi:10.1175/2011jcli4083.1

    Article  Google Scholar 

  24. Hamilton K (1995) Interannual variability in the northern hemisphere winter middle atmosphere in control and perturbed experiments with the GFDL SKYHI general circulation model. J Atmos Sci 52:44–66. doi:10.1175/1520-0469(1995)052<0044:ivitnh>2.0.co;2

    Article  Google Scholar 

  25. Hegyi BM, Deng Y (2011) A dynamical fingerprint of tropical Pacific sea surface temperatures on the decadal-scale variability of cool-season Arctic precipitation. J Geophys Res 116:D20121. doi:10.1029/2011jd016001

    Article  Google Scholar 

  26. Hegyi BM, Deng Y, Black RX, Zhou RJ (2014) Initial transient response of the winter polar stratospheric vortex to idealized equatorial Pacific sea surface temperature anomalies in the NCAR WACCM. J Clim 27:2699–2713. doi:10.1175/jcli-d-13-00289.1

    Article  Google Scholar 

  27. Holland MM, Bailey DA, Briegleb BP, Light B, Hunke E (2012) Improved sea ice shortwave radiation physics in CCSM4: the impact of melt ponds and aerosols on arctic sea ice. J Clim 25:1413–1430. doi:10.1175/jcli-d-11-00078.1

    Article  Google Scholar 

  28. Hu Z-Z, Kumar A, Xue Y, Jha B (2014) Why were some La Niñas followed by another La Niña? Clim Dyn 42:1029–1042. doi:10.1007/s00382-013-1917-3

    Article  Google Scholar 

  29. Huang B, Hu Z-Z, Kinter JL, Wu Z, Kumar A (2012) Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part I: methodology and composite life cycle. Clim Dyn 38:1–23. doi:10.1007/s00382-011-1250-7

    Article  Google Scholar 

  30. Ishii M, Shouji A, Sugimoto S, Matsumoto T (2005) Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the KOBE collection. Int J Climatol 25:865–879. doi:10.1002/joc.1169

    Article  Google Scholar 

  31. Jackman CH, Marsh DR, Vitt FM, Garcia RR, Randall CE, Fleming EL, Frith SM (2009) Long-term middle atmospheric influence of very large solar proton events. J Geophys Res 114:D11304. doi:10.1029/2008jd011415

    Article  Google Scholar 

  32. Jiang N, Neelin JD, Ghil M (1995) Quasi-quadrennial and quasi-biennial variability in the equatorial Pacific. Clim Dyn 12(2):101–112. doi:10.1007/bf00223723

    Article  Google Scholar 

  33. Jin F-F, An S-I, Timmermann A, Zhao J (2003) Strong El Niño events and nonlinear dynamical heating. Geophys Res Lett 30:1120. doi:10.1029/2002gl016356

    Article  Google Scholar 

  34. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. doi:10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2

    Article  Google Scholar 

  35. Kim KY, Kim YY (2002) Mechanism of Kelvin and Rossby waves during ENSO events. Meteorol Atmos Phys 81:169–189. doi:10.1007/s00703-002-0547-9

    Article  Google Scholar 

  36. Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932. doi:10.1175/1520-0442(1999)012<0917:rsstvd>2.0.co;2

    Article  Google Scholar 

  37. Kobayashi S, Ota Y, Harada Y, Ebita A et al (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn 93:5–48. doi:10.2151/jmsj.2015-001

    Article  Google Scholar 

  38. Kumar A, Hoerling MP (2003) The nature and causes for the delayed atmospheric response to El Niño. J Clim 16:1391–1403. doi:10.1175/1520-0442-16.9.1391

    Article  Google Scholar 

  39. Labitzke K, van Loon H (1989) The Southern Oscillation. Part IX: the influence of volcanic eruptions on the Southern Oscillation in the stratosphere. J Clim 2:1223–1226. doi:10.1175/1520-0442(1989)002<1223:tsopit>2.0.co;2

    Article  Google Scholar 

  40. Lau NC, Leetmaa A, Nath MJ, Wang HL (2005) Influences of ENSO-induced Indo-Western Pacific SST anomalies on extratropical atmospheric variability during the boreal summer. J Clim 18:2922–2942. doi:10.1175/jcli3445.1

    Article  Google Scholar 

  41. Li Q, Ren RC, Cai M, Wu GX (2012) Attribution of the summer warming since 1970s in Indian Ocean Basin to the inter-decadal change in the seasonal timing of El Niño decay phase. Geophys Res Lett 39:L12702. doi:10.1029/2012gl052150

    Google Scholar 

  42. Manzini E, Giorgetta MA, Esch M, Kornblueh L, Roeckner E (2006) The influence of sea surface temperatures on the northern winter stratosphere: ensemble simulations with the MAECHAM5 model. J Clim 19:3863–3881. doi:10.1175/jcli3826.1

    Article  Google Scholar 

  43. Marsh DR, Garcia RR, Kinnison DE, Boville BA, Sassi F, Solomon SC, Matthes K (2007) Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. J Geophys Res 112:D23306. doi:10.1029/2006jd008306

    Article  Google Scholar 

  44. Marsh DR, Mills MJ, Kinnison DE, Lamarque J-F, Calvo N, Polvani LM (2013) Climate Change from 1850 to 2005 Simulated in CESM1(WACCM). J Clim 26:7372–7391. doi:10.1175/jcli-d-12-00558.1

    Article  Google Scholar 

  45. Matthes K, Marsh DR, Garcia RR, Kinnison DE, Sassi F, Walters S (2010) Role of the QBO in modulating the influence of the 11 year solar cycle on the atmosphere using constant forcings. J Geophys Res 115:D18110. doi:10.1029/2009jd013020

    Article  Google Scholar 

  46. Neale RB, Richter J, Park S, Lauritzen PH, Vavrus SJ, Rasch PJ, Zhang MH (2013) The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J Clim 26:5150–5168. doi:10.1175/jcli-d-12-00236.1

    Article  Google Scholar 

  47. Newell RE, Weare BC (1976) Factors governing tropospheric mean temperature. Science 194:1413–1414. doi:10.1126/science.194.4272.1413

    Article  Google Scholar 

  48. Plumb RA (1985) On the three-dimensional propagation of stationary waves. J Atmos Sci 42(3):217–229

    Article  Google Scholar 

  49. Rao J, Ren RC (2016) A decomposition of ENSO’s impacts on the northern winter stratosphere: competing effect of SST forcing in the tropical Indian Ocean. Clim Dyn 46:3689–3707. doi:10.1007/s00382-015-2797-5

    Article  Google Scholar 

  50. Rao J, Ren RC, Yang Y (2014) Numerical simulations of the impacts of tropical convective heating on the intensity of the northern winter stratospheric polar vortex. Chin J Atmos Sci 38(6):1159–1171. doi:10.3878/j.issn.1006-9895.1404.13268 (in Chinese)

    Google Scholar 

  51. Rao J, Ren RC, Yang Y (2015) Parallel comparison of the northern winter stratospheric circulation in reanalysis and in CMIP5 models. Adv Atmos Sci 32(7):952–966. doi:10.1007/s00376-014-4192-2

    Article  Google Scholar 

  52. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002jd002670

    Article  Google Scholar 

  53. Reid G, Gage K, McAfee J (1989) The thermal response of the tropical atmosphere to variations in equatorial Pacific sea surface temperature. J Geophys Res 94:14705–14716. doi:10.1029/jd094id12p14705

    Article  Google Scholar 

  54. Ren RC (2012a) Study of the lag-coupling between the timescale ENSO events and the stratospheric circulation in the past 60 years and its mechanism. Acta Meteorol Sin 70: 520–535. doi:10.11676/qxxb2012.043 (in Chinese)

    Google Scholar 

  55. Ren RC (2012b) Seasonality of the lagged relationship between ENSO and the Northern Hemispheric polar vortex variability. Atmos Ocean Sci Lett 5:113–118. doi:10.1080/16742834.2012.11446975

    Article  Google Scholar 

  56. Ren RC, Cai M, Xiang C, Wu G (2012) Observational evidence of the delayed response of stratospheric polar vortex variability to ENSO SST anomalies. Clim Dyn 38:1345–1358. doi:10.1007/s00382-011-1137-7

    Article  Google Scholar 

  57. Richter JH, Sassi F, Garcia RR (2010) Toward a physically based gravity wave source parameterization in a general circulation model. J Atmos Sci 67(1):136–156. doi:10.1175/2009jas3112.1

    Article  Google Scholar 

  58. Saravanan R, Chang P (2000) Interaction between tropical Atlantic variability and El Niño-Southern Oscillation. J Clim 13:2177–2194. doi:10.1175/1520-0442(2000)013<2177:ibtava>2.0.co;2

    Article  Google Scholar 

  59. Sassi F, Kinnison D, Boville BA, Garcia RR, Roble R (2004) Effect of El Niño-Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J Geophys Res 109:D17108. doi:10.1029/2003jd004434

    Article  Google Scholar 

  60. Taguchi M, Hartmann DL (2006) Increased occurrence of stratospheric sudden warmings during El niño as simulated by WACCM. J Clim 19:324–332. doi:10.1175/jcli3655.1

    Article  Google Scholar 

  61. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/bams-d-11-00094.1

    Article  Google Scholar 

  62. Tozuka T, Yamagata T (2003) Annual ENSO. J Phys Oceanogr 33:1564–1578. doi:10.1175/2414.1

    Article  Google Scholar 

  63. Uppala SM, Kallberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  64. van Loon H, Zerefos C, Repapis C (1982) The Southern Oscillation in the stratosphere. Mon Weather Rev 110:225–229. doi:10.1175/1520-0493(1982)110<0225:tsoits>2.0.co;2

    Article  Google Scholar 

  65. Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28:3923–3926. doi:10.1029/2001gl013435

    Article  Google Scholar 

  66. Wallace JM, Chang FC (1982) Interannual variability of the wintertime polar vortex in the Northern Hemisphere middle stratosphere. J Meteorol Soc Jpn 60:149–155

    Google Scholar 

  67. Wang B, An SI (2005) A method for detecting season-dependent modes of climate variability: S-EOF analysis. Geophys Res Lett 32:L15710. doi:10.1029/2005gl022709

    Article  Google Scholar 

  68. Wei K, Chen W, Huang R (2007) Association of tropical Pacific sea surface temperatures with the stratospheric Holton-Tan Oscillation in the Northern Hemisphere winter. Geophys Res Lett 34:L16814. doi:10.1029/2007gl030478

    Google Scholar 

  69. Xie F, Li J, Tian W, Feng J, Huo Y (2012) Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmos Chem Phys 12:5259–5273. doi:10.5194/acp-12-5259-2012

    Article  Google Scholar 

  70. Yulaeva E, Wallace JM (1994) The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit. J Clim 7:1719–1736. doi:10.1175/1520-0442(1994)007<1719:tsoeig>2.0.co;2

    Article  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by research grants from the National Science Foundation of China (41575041, 41430533, and 91437105), a Chinese Academy of Sciences project (XDA11010402), and a China Meteorological Administration Special Public Welfare Research Fund (GYHY201406001). We thank the relevant agencies (i.e., NCEP/NCAR, the ECWMF, the JMA, and the UKMO/HC) for providing the three reanalysis datasets (NCEP/NCAR, ERA, and JRA) and the SST analysis datasets (HadISST and COBE) used in this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rongcai Ren.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ren, R., Rao, J., Wu, G. et al. Tracking the delayed response of the northern winter stratosphere to ENSO using multi reanalyses and model simulations. Clim Dyn 48, 2859–2879 (2017). https://doi.org/10.1007/s00382-016-3238-9

Download citation

Keywords

  • ENSO
  • Delayed effects
  • Northern winter stratosphere