Climate Dynamics

, Volume 48, Issue 7–8, pp 2653–2670 | Cite as

Spatial patterns of recent Antarctic surface temperature trends and the importance of natural variability: lessons from multiple reconstructions and the CMIP5 models

  • Karen L. SmithEmail author
  • Lorenzo M. Polvani


The recent annually averaged warming of the Antarctic Peninsula, and of West Antarctica, stands in stark contrast to very small trends over East Antarctica. This asymmetry arises primarily from a highly significant warming of West Antarctica in austral spring and a cooling of East Antarctica in austral autumn. Here we examine whether this East–West asymmetry is a response to anthropogenic climate forcings or a manifestation of natural climate variability. We compare the observed Antarctic surface air temperature trends over two distinct time periods (1960–2005 and 1979–2005), and with those simulated by 40 models participating in Phase 5 of the Coupled Model Intercomparison Project (CMIP5). We find that the observed East–West asymmetry differs substantially between the two periods and, furthermore, that it is completely absent from the forced response seen in the CMIP5 multi-model mean, from which all natural variability is eliminated by the averaging. We also examine the relationship between the Southern Annular mode (SAM) and Antarctic temperature trends, in both models and reanalyses, and again conclude that there is little evidence of anthropogenic SAM-induced driving of the recent temperature trends. These results offer new, compelling evidence pointing to natural climate variability as a key contributor to the recent warming of West Antarctica and of the Peninsula.


Antarctic climate change Climate variability Coupled climate models 



This work is funded, in part, by a grant from the National Science Foundation (NSF) to Columbia University. KLS is also funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) Postdoctoral Fellowship. We acknowledge the World Climate Research Programme Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP the U.S. Department of Energy Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. The authors wish to express their gratitude to David Schneider for several eye-opening conversations and to Andrew Monaghan for providing his updated Antarctic temperature reconstruction. KLS would also like to thank Michael Previdi, Gabriel Chiodo and Abraham Solomon. CMIP5 data for this article was obtained online via the Earth System Grid portal, the CHAPMAN data was obtained at, the GISTEMP data was obtained at, the M10 data was made available to us by request from A. Monaghan (, and the Steig data was obtained at

Supplementary material

382_2016_3230_MOESM1_ESM.pdf (278 kb)
Supplementary material 1 (pdf 278 KB)


  1. Arblaster JM, Meehl GA (2006) Contributions of external forcings to southern annular mode trends. J Clim 19(12):2896–2905. doi: 10.1175/JCLI3774.1 CrossRefGoogle Scholar
  2. Bracegirdle TJ, Marshall GJ (2012) The reliability of antarctic tropospheric pressure and temperature in the latest global reanalyses. J Clim 25:7138–7146. doi: 10.1175/JCLI-D-11-00685.1 CrossRefGoogle Scholar
  3. Bracegirdle TJ, Stephenson DB, Turner J, Phillips T (2015) The importance of sea ice area bias in 21st century multimodel projections of Antarctic temperature and precipitation. Geophys Res Lett. doi: 10.1002/2015GL067055 Google Scholar
  4. Bromwich DH, Nicolas JP, Monaghan AJ, Lazzara MA, Keller LM, Weidner DA, Wilson AB (2013) Central West Antarctica among the most rapidly warming regions on Earth. Nat Geosci 6(2):139–145. doi: 10.1038/ngeo1671 CrossRefGoogle Scholar
  5. Chapman WL, Walsh JE (2007) A synthesis of Antarctic temperatures. J Clim 20(16):4096–4117. doi: 10.1175/JCLI4236.1 CrossRefGoogle Scholar
  6. Clem KR, Fogt RL (2015) South Pacific circulation changes and their connection to the tropics and regional Antarctic warming in austral spring, 1979–2012. J Geophys Res 120(7):2773–2792. doi: 10.1002/2014JD022940 Google Scholar
  7. Clem KR, Renwick JA (2015) Austral spring Southern Hemisphere circulation and temperature changes and links to the SPCZ. J Clim 28:7371–7384. doi: 10.1175/JCLI-D-15-0125.1 CrossRefGoogle Scholar
  8. Clement A, Seager R, Cane M, Zebiak S (1996) An ocean dynamical thermostat. J Clim 9:2190–2196CrossRefGoogle Scholar
  9. Dai A, Fyfe JC, Xie SP, Dai X (2015) Decadal modulation of global surface temperature by internal climate variability. Nat Clim Change 5(6):555–559. doi: 10.1038/nclimate2605 CrossRefGoogle Scholar
  10. Dee DP, Uppala SM, Simmons aJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda Ma, Balsamo G, Bauer P, Bechtold P, Beljaars aCM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer aJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally aP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  11. Deser C, Phillips A, Bourdette V, Teng H (2010) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38(3–4):527–546. doi: 10.1007/s00382-010-0977-x Google Scholar
  12. Deser C, Knutti R, Solomon S, Phillips AS (2012) Communication of the role of natural variability in future North American climate. Nat Clim Change 2(11):775–779. doi: 10.1038/nclimate1562 CrossRefGoogle Scholar
  13. Ding Q, Steig EJ, Battisti DS, Küttel M (2011) Winter warming in West Antarctica caused by central tropical Pacific warming. Nat Geosci 4(6):398–403. doi: 10.1038/ngeo1129 CrossRefGoogle Scholar
  14. Eyring V, Arblaster JM, Cionni I, Sedláček J, Perlwitz J, Young PJ, Bekki S, Bergmann D, Cameron-Smith P, Collins WJ, Faluvegi G, Gottschaldt KD, Horowitz LW, Kinnison DE, Lamarque JF, Marsh DR, Saint-Martin D, Shindell DT, Sudo K, Szopa S, Watanabe S (2013) Long-term ozone changes and associated climate impacts in CMIP5 simulations. J Geophys Res Atmos 118(10):5029–5060. doi: 10.1002/jgrd.50316 CrossRefGoogle Scholar
  15. Fan T, Deser C, Schneider D (2014) Recent Antarctic sea ice trends in the context of Southern Ocean surface climate variations since 1950. Geophys Res Lett. doi: 10.1002/2014GL059239 Google Scholar
  16. Ferreira D, Marshall J, Bitz CM, Solomon S, Plumb A (2015) Antarctic ocean and sea ice response to ozone depletion: a two-time-scale problem. J Clim 28(3):1206–1226. doi: 10.1175/JCLI-D-14-00313.1 CrossRefGoogle Scholar
  17. Fogt RL, Wovrosh AJ (2015) The relative influence of tropical sea surface temperatures and radiative forcing on the Amundsen Sea Low. J Clim 28(21):8540–8555. doi: 10.1175/JCLI-D-15-0091.1 CrossRefGoogle Scholar
  18. Fogt RL, Zbacnik EA (2014) Sensitivity of the Amundsen Sea low to stratospheric ozone depletion. J Clim 27(24):9383–9401. doi: 10.1175/JCLI-D-13-00657.1 CrossRefGoogle Scholar
  19. Fogt RL, Perlwitz J, Monaghan AJ, Bromwich DH, Jones JM, Marshall GJ (2009) Historical SAM variability. Part II: twentieth-century variability and trends from reconstructions, observations, and the IPCC AR4 models*. J Clim 22(20):5346–5365. doi: 10.1175/2009JCLI2786.1 CrossRefGoogle Scholar
  20. Fogt RL, Jones JM, Renwick J (2012) Seasonal zonal asymmetries in the Southern Annular Mode and their impact on regional temperature anomalies. J Clim 25(18):6253–6270. doi: 10.1175/JCLI-D-11-00474.1 CrossRefGoogle Scholar
  21. Gagne ME, Gillett NP, Fyfe JC (2015) Observed and simulated changes in Antarctic sea ice extent over the past 50 years. Geophys Res Lett 42(1):90–95. doi: 10.1002/2014GL062231 CrossRefGoogle Scholar
  22. Gillett NP, Kell TD, Jones PD (2006) Regional climate impacts of the Southern Annular Mode. Geophys Res Lett 33(23):L23,704. doi: 10.1029/2006GL027721 CrossRefGoogle Scholar
  23. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:1–29. doi: 10.1029/2010RG000345.1.INTRODUCTION CrossRefGoogle Scholar
  24. Hawkins E, Sutton R (2012) Time of emergence of climate signals. Geophys Res Lett. doi: 10.1029/2011GL050087 Google Scholar
  25. Hosking JS, Orr A, Marshall GJ, Turner J, Phillips T (2013) The Influence of the AmundsenBellingshausen seas low on the climate of West Antarctica and its representation in coupled climate model simulations. J Clim. doi: 10.1175/JCLI-D-12-00813.1 Google Scholar
  26. Hosking JS, Orr A, Bracegirdle TJ, Turner J (2016) Future circulation changes off West Antarctica: sensitivity of the Amundsen Sea low to projected anthropogenic forcing. Geophys Res Lett. doi: 10.1002/2015GL067143 Google Scholar
  27. Jones PD, Lister DH (2015) Antarctic near-surface air temperatures compared with ERA-Interim values since 1979. Int J Climatol 35:1354–1366. doi: 10.1002/joc.4061 CrossRefGoogle Scholar
  28. Joughin I, Smith BE, Medley B (2014) Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344(6185):735–738. doi: 10.1126/science.1249055 CrossRefGoogle Scholar
  29. Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501(7467):403–7. doi: 10.1038/nature12534 CrossRefGoogle Scholar
  30. Lee S, Feldstein SB (2013) Detecting ozone- and greenhouse gas-driven wind trends with observational data. Science 339(6119):563–567. doi: 10.1126/science.1225154 CrossRefGoogle Scholar
  31. Li X, Gerber EP, Holland DM, Yoo C (2015) A Rossby wave bridge from the tropical Atlantic to West Antarctica. J Clim 28(6):2256–2273. doi: 10.1175/JCLI-D-14-00450.1 CrossRefGoogle Scholar
  32. Marshall G (2003) Trends in the Southern Annular Mode from observations and reanalyses. J Clim 16(1999):4134–4143CrossRefGoogle Scholar
  33. Marshall GJ (2007) Short communication half-century seasonal relationships between the Southern Annular Mode and Antarctic temperatures. Int J Climatol 383:373–383. doi: 10.1002/joc CrossRefGoogle Scholar
  34. Marshall GJ, Bracegirdle TJ (2014) An examination of the relationship between the Southern Annular Mode and Antarctic surface air temperatures in the CMIP5 historical runs. Clim Dyn. doi: 10.1007/s00382-014-2406-z Google Scholar
  35. Marshall GJ, Orr A, Turner J (2013) A predominant reversal in the relationship between the SAM and East Antarctic temperatures during the twenty-first century. J Clim 26(14):5196–5204. doi: 10.1175/JCLI-D-12-00671.1 CrossRefGoogle Scholar
  36. McLandress C, Shepherd TG, Scinocca JF, Da Plummer, Sigmond M, Jonsson AI, Reader MC (2011) Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J Clim 24(6):1850–1868. doi: 10.1175/2010JCLI3958.1 CrossRefGoogle Scholar
  37. Meehl GA, Arblaster JM, Fasullo JT, Hu A, Trenberth KE (2011) Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat Clim Change 1(7):360–364. doi: 10.1038/nclimate1229 CrossRefGoogle Scholar
  38. Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto K, Sa Montzka, Raper SCB, Riahi K, Thomson a, Velders GJM, Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109(1–2):213–241. doi: 10.1007/s10584-011-0156-z CrossRefGoogle Scholar
  39. Monaghan AJ, Bromwich DH (2008) Advances in describing recent Antarctic climate variability. Bull Am Meteorol Soc 1295–1306Google Scholar
  40. Monaghan AJ, Bromwich DH, Schneider DP (2008) Twentieth century Antarctic air temperature and snowfall simulations by IPCC climate models. Geophys Res Lett. 89:9. doi: 10.1029/2007GL032630 Google Scholar
  41. Nicolas JP, Bromwich DH (2014) New reconstruction of Antarctic near-surface temperatures: multidecadal trends and reliability of global reanalyses. J Clim 27(21):8070–8093. doi: 10.1175/JCLI-D-13-00733.1 CrossRefGoogle Scholar
  42. ODonnell R, Lewis N, McIntyre S, Condon J (2011) Improved methods for PCA-based reconstructions: case study using the Steig et al. (2009) Antarctic temperature reconstruction. J Clim 24(8):2099–2115. doi: 10.1175/2010JCLI3656.1 CrossRefGoogle Scholar
  43. Polvani LM, Smith KL (2013) Can natural variability explain observed Antarctic sea ice trends? New modeling evidence from CMIP5. Geophys Res Lett 40(12):3195–3199. doi: 10.1002/grl.50578 CrossRefGoogle Scholar
  44. Polvani LM, Waugh DW, Correa GJP, Son SW (2011) Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J Clim 24(3):795–812. doi: 10.1175/2010JCLI3772.1 CrossRefGoogle Scholar
  45. Previdi M, Polvani LM (2014) Climate system response to stratospheric ozone depletion and recovery. Q J R Meteorol Soc 140(685):2401–2419. doi: 10.1002/qj.2330 CrossRefGoogle Scholar
  46. Previdi M, Smith KL, Polvani LM (2015) How well do the CMIP5 models simulate the antarctic atmospheric energy budget? J Clim 28(20):7933–7942. doi: 10.1175/JCLI-D-15-0027.1 CrossRefGoogle Scholar
  47. Raphael MN, Marshall GJ, Turner J, Fogt R, Schneider D, Dixon DA, Hosking JS, Jones JM, Hobbs WR (2015) The Amundsen Sea low: variability, change and impact on antarctic climate. Bull Am Meteorol Soc. doi: 10.1175/BAMS-D-14-00018.1 Google Scholar
  48. Rignot E, Mouginot J, Morlighem M, Seroussi H, Scheuchl B (2014) Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica. Geophys Res Lett. doi: 10.1002/2014GL060140
  49. Santer BD, Wigley TML, Boyle JS, Gaffen DJ, Hnilo JJ, Nychka D, Parker DE, Taylor KE (2000) Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J Geophys Res 105(D6):7337. doi: 10.1029/1999JD901105 CrossRefGoogle Scholar
  50. Schneider D, Steig E, Comiso J (2004) Recent climate variability in Antarctica from satellite-derived temperature data. J Clim 17:1569–1583CrossRefGoogle Scholar
  51. Schneider DP, Reusch DB (2015) Antarctic and Southern Ocean surface temperatures in CMIP5 models in the context of the surface energy budget. J Clim 29:1689–1716. doi: 10.1175/JCLI-D-15-0429.1 CrossRefGoogle Scholar
  52. Schneider DP, Deser C, Okumura Y (2012) An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Clim Dyn 38(1–2):323–347. doi: 10.1007/s00382-010-0985-x CrossRefGoogle Scholar
  53. Schneider DP, Deser C, Fan T (2015) Comparing the impacts of tropical SST variability and polar stratospheric ozone loss on the Southern Ocean westerly winds. J Clim 28(23):9350–9372. doi: 10.1175/JCLI-D-15-0090.1 CrossRefGoogle Scholar
  54. Shindell DT (2004) Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophys Res Lett 31(18):L18,209. doi: 10.1029/2004GL020724 CrossRefGoogle Scholar
  55. Simpkins GR, Ciasto LM, England MH (2013) Observed variations in multidecadal Antarctic sea ice trends during 1979–2012. Geophys Res Lett 40(14):3643–3648. doi: 10.1002/grl.50715 CrossRefGoogle Scholar
  56. Simpkins GR, McGregor S, Taschetto AS, Ciasto LM, England MH (2014) Tropical connections to climatic change in the extratropical Southern Hemisphere: the role of Atlantic SST trends. J Clim 27(13):4923–4936. doi: 10.1175/JCLI-D-13-00615.1 CrossRefGoogle Scholar
  57. Steig EJ, Schneider DP, Rutherford SD, Mann ME, Comiso JC, Shindell DT (2009) Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 457(7228):459–462. doi: 10.1038/nature07669 CrossRefGoogle Scholar
  58. Swart NC, Fyfe JC (2012) Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys Res Lett 39(16):6–11. doi: 10.1029/2012GL052810 CrossRefGoogle Scholar
  59. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  60. Thomas ER, Bracegirdle TJ, Turner J, Wolff EW (2013) A 308 year record of climate variability in West Antarctica. Geophys Res Lett 40(20):5492–5496. doi: 10.1002/2013GL057782 CrossRefGoogle Scholar
  61. Thomas JL, Waugh D, Gnanadesikan A (2015) Decadal variability in the Southern Hemisphere extratopical circulation: recent trends and natural variability. Geophyis Res Lett 42(13):5508–5515. doi: 10.1002/2015GL064521.Changes CrossRefGoogle Scholar
  62. Thompson D, Wallace J (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016CrossRefGoogle Scholar
  63. Thompson DWJ, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296(5569):895–899. doi: 10.1126/science.1069270 CrossRefGoogle Scholar
  64. Thompson DWJ, Solomon S, Kushner PJ, England MH, Grise KM, Karoly DJ (2011) Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat Geosci 4(11):741–749. doi: 10.1038/ngeo1296 CrossRefGoogle Scholar
  65. Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25(3):279–294. doi: 10.1002/joc.1130 CrossRefGoogle Scholar
  66. Turner J, Phillips T, Hosking JS, Marshall GJ, Orr A (2013) The Amundsen Sea low. Int J Climatol 33:1818–1829. doi: 10.1002/joc.3558 CrossRefGoogle Scholar
  67. Turner J, Hosking JS, Marshall GJ, Phillips T, Bracegirdle TJ (2015) Antarctic sea ice increase consistent with intrinsic variability of the Amundsen Sea low. Clim Dyn. doi: 10.1007/s00382-015-2708-9 Google Scholar
  68. Zunz V, Goosse H, Massonnet F (2012) How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent? Cryosphere Discuss 6(5):3539–3573. doi: 10.5194/tcd-6-3539-2012 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Division of Ocean and Climate PhysicsLamont-Doherty Earth ObservatoryPalisadesUSA
  2. 2.Department of Applied Physics and Applied Mathematics, Department of Earth and Environmental SciencesColumbia UniversityNew YorkUSA

Personalised recommendations