Climate Dynamics

, Volume 48, Issue 7–8, pp 2529–2540 | Cite as

Modulation of the Southern Africa precipitation response to the El Niño Southern Oscillation by the subtropical Indian Ocean Dipole

  • Andrew HoellEmail author
  • Chris Funk
  • Jens Zinke
  • Laura Harrison


The climate of Southern Africa, defined as the land area bound by the region 15°S–35°S; 12.5°E–42.5°E, during the December–March rainy season is driven by Indo-Pacific sea surface temperature (SST) anomalies associated with the El Niño Southern Oscillation (ENSO) and the Subtropical Indian Ocean Dipole (SIOD). The observed December–March 1979–2014 Southern Africa precipitation during the four ENSO and SIOD phase combinations suggests that the phase of the SIOD can disrupt or enhance the Southern Africa precipitation response to ENSO. Here, we use a large ensemble of model simulations driven by global SST and ENSO-only SST to test whether the SIOD modifies the relationship between Southern Africa precipitation and ENSO. Since ENSO-based precipitation forecasts are used extensively over Southern Africa, an improved understanding of how other modes of SST variability modulate the regional response to ENSO is important. ENSO, in the absence of the SIOD, forces an equivalent barotropic Rossby wave over Southern Africa that modifies the regional mid-tropospheric vertical motions and precipitation anomalies. El Niño (La Niña) is related with high (low) pressure over Southern Africa that produces anomalous mid-tropospheric descent (ascent) and decreases (increases) in precipitation relative to average. When the SIOD and ENSO are in opposite phases, the SIOD compliments the ENSO-related atmospheric response over Southern Africa by strengthening the regional equivalent barotropic Rossby wave, anomalous mid-tropospheric vertical motions and anomalous precipitation. By contrast, when the SIOD and ENSO are in the same phase, the SIOD disrupts the ENSO-related atmospheric response over Southern Africa by weakening the regional equivalent barotropic Rossby wave, anomalous mid-tropospheric vertical motions and anomalous precipitation.


Southern Africa Precipitation El Nino-Southern Oscillation Subtropical Indian Ocean Dipole 



The authors thank Dave Allured for completing the ECHAM5.4 simulations and Tao Zhang for completing the GFSv2 simulations. The authors are grateful for support from the Famine Early Warning Systems Network (FEWS NET).


  1. Adler RF et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167CrossRefGoogle Scholar
  2. Allan RJ, Reason CJC, Lindesay JA, Ansell TJ (2003) Protracted’ ENSO episodes and their impacts in the Indian Ocean region. Deep Sea Res Part II Top Stud Oceanogr 50:2331–2347CrossRefGoogle Scholar
  3. Behera SK, Yamagata T (2001) Subtropical SST dipole events in the southern Indian Ocean. Geophys Res Lett 28:327–330CrossRefGoogle Scholar
  4. Behera SK, Salvekar PS, Yamagata T (2000) Simulation of interannual SST variability in the tropical Indian Ocean. J Clim 13:3487–3499CrossRefGoogle Scholar
  5. Behera SK, Luo J-J, Masson S, Delecluse P, Gualdi S, Navarra A, Yamagata T (2005) Paramount impact of the Indian Ocean Dipole on the East African short rains: a CGCM study. J Clim 18:4514–4530CrossRefGoogle Scholar
  6. Chambers DP, Tapley BD, Stewart RH (1999) Anomalous warming in the Indian Ocean coincident with El Niño. J Geophys Res Oceans 104:3035–3047CrossRefGoogle Scholar
  7. Fauchereau N, Pohl B, Reason CJC, Rouault M, Richard Y (2008) Recurrent daily OLR patterns in the Southern Africa/Southwest Indian Ocean region, implications for South African rainfall and teleconnections. Clim Dyn 32:575–591CrossRefGoogle Scholar
  8. Goddard L, Graham NE (1999) Importance of the Indian Ocean for simulating rainfall anomalies over eastern and southern Africa. J Geophys Res Atmos 104:19099–19116CrossRefGoogle Scholar
  9. Grove CA, Zinke J, Peeters F, Park W, Scheufen T, Kasper S, Randriamanantsoa B, McCulloch MT, Brummer GJA (2012) Madagascar corals reveal Pacific multidecadal modulation of rainfall since 1708. Clim Past 9:641–656CrossRefGoogle Scholar
  10. Hansingo K, Reason CJC (2009) Modelling the atmospheric response over southern Africa to SST forcing in the southeast tropical Atlantic and southwest subtropical Indian Oceans. Int J Climatol 29:1001–1012CrossRefGoogle Scholar
  11. Hastenrath S, Greischar L, van Heerden J (1995) Prediction of the summer rainfall over South Africa. J Clim 8:1511–1518CrossRefGoogle Scholar
  12. Hoell A, Funk C, Magadzire T, Zinke J, Husak G (2015) El Niño-Southern Oscillation diversity and Southern Africa teleconnections during Austral Summer. Clim Dyn 45:1583–1599CrossRefGoogle Scholar
  13. Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36:L17808. doi: 10.1029/2009GL040000 CrossRefGoogle Scholar
  14. Hurrell JW, Hack JJ, Shea D, Caron JM, Rosinski J (2008) A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J Clim 21:5145–5153CrossRefGoogle Scholar
  15. Jury MR (1992) A climatic dipole governing the interannual variability of convection over the SW Indian Ocean and SE Africa region. Trends Geophys Res 1:165–172Google Scholar
  16. Jury MR, Mc Queen C, Levey K (1994) SOI and QBO signals in the African region. Theor Appl Climatol 50:103–115CrossRefGoogle Scholar
  17. Landman WA, Goddard L (2005) Predicting southern African summer rainfall using a combination of MOS and perfect prognosis. Geophys Res Lett 32:L15809. doi: 10.1029/2005GL022910 CrossRefGoogle Scholar
  18. Landman WA, DeWitt D, Lee D-E, Beraki A, Lötter D (2011) Seasonal rainfall prediction skill over South Africa: one- versus two-tiered forecasting systems. Weather Forecast 27:489–501CrossRefGoogle Scholar
  19. Lindesay JA (1988) South African rainfall, the Southern Oscillation and a Southern hemisphere semi-annual cycle. J Climatol 8:17–30CrossRefGoogle Scholar
  20. Lyon B, Mason SJ (2009) The 1997/98 summer rainfall season in Southern Africa. Part II: model simulations and coupled model forecasts. J Clim 22:3802–3818CrossRefGoogle Scholar
  21. Manatsa D, Matarira CH, Mukwada G (2011) Relative impacts of ENSO and Indian Ocean dipole/zonal mode on east SADC rainfall. Int J Climatol 31:558–577CrossRefGoogle Scholar
  22. Manatsa D, Reason CJC, Mukwada G (2012) On the decoupling of the IODZM from southern Africa Summer rainfall variability. Int J Climatol 32:727–746CrossRefGoogle Scholar
  23. Manatsa D, Mushore T, Lenouo A (2015) Improved predictability of droughts over southern Africa using the standardized precipitation evapotranspiration index and ENSO. Theor Appl Climatol p 1–16Google Scholar
  24. Mason SJ, Jury MR (1997) Climatic variability and change over southern Africa: a reflection on underlying processes. Prog Phys Geogr 21:23–50CrossRefGoogle Scholar
  25. Misra V (2003) The influence of Pacific SST variability on the precipitation over Southern Africa. J Clim 16:2408–2418CrossRefGoogle Scholar
  26. Nicholson SE (1997) An analysis of the enso signal in the tropical atlantic and western indian oceans. Int J Climatol 17:345–375CrossRefGoogle Scholar
  27. Nicholson S, Entekhabi D (1986) The quasi-periodic behavior of rainfall variability in Africa and its relationship to the southern oscillation. Arch Met Geophys Bioclim A 34:311–348CrossRefGoogle Scholar
  28. Nicholson SE, Kim J (1997) The relationship of the el niño–southern oscillation to african rainfall. Int J Climatol 17:117–135CrossRefGoogle Scholar
  29. Ratnam JV, Behera SK, Masumoto Y, Yamagata T (2014) Remote effects of El Niño and Modoki events on the Austral summer precipitation of Southern Africa. J Clim 27:3802–3815CrossRefGoogle Scholar
  30. Reason CJC (2001) Subtropical Indian Ocean SST dipole events and southern African rainfall. Geophys Res Lett 28:2225–2227CrossRefGoogle Scholar
  31. Reason C (2015) Tropical south east Atlantic warm events and associated rainfall anomalies over southern Africa. Front Environ Sci 3:24CrossRefGoogle Scholar
  32. Reason CJC, Jagadheesha D (2005) A model investigation of recent ENSO impacts over southern Africa. Meteorol Atmos Phys 89:181–205CrossRefGoogle Scholar
  33. Reason CJC, Rouault M (2002) ENSO-like decadal variability and South African rainfall. Geophys Res Lett 29:16-11–16-14Google Scholar
  34. Reason CJC, Allan RJ, Lindesay JA, Ansell TJ (2000) ENSO and climatic signals across the Indian Ocean Basin in the global context: part I, interannual composite patterns. Int J Climatol 20:1285–1327CrossRefGoogle Scholar
  35. Rocha A, Simmonds IAN (1997) Interannual variability of South-Eastern African summer rainfall. Part 1: relationships with air–sea interaction processes. Int J Climatol 17:235–265CrossRefGoogle Scholar
  36. Roeckner E et al (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791CrossRefGoogle Scholar
  37. Rouault M, Florenchie P, Fauchereau N, Reason CJC (2003) South East tropical Atlantic warm events and southern African rainfall. Geophys Res Lett 30(5):8009. doi: 10.1029/2002GL014840 CrossRefGoogle Scholar
  38. Saha S et al (2013) The NCEP climate forecast system version 2. J Clim 27:2185–2208CrossRefGoogle Scholar
  39. Saji NH, Yamagata T (2003) Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Research 25:151–169CrossRefGoogle Scholar
  40. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363Google Scholar
  41. Wang B et al (2009) Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Clim Dyn 33:93–117CrossRefGoogle Scholar
  42. Washington R, Preston A (2006) Extreme wet years over southern Africa: Role of Indian Ocean sea surface temperatures. J Geophys Res Atmos 111Google Scholar
  43. Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98. Nature 401:356–360CrossRefGoogle Scholar
  44. Wyrtki K (1975) El Niño—the dynamic response of the equatorial Pacific Oceanto atmospheric forcing. J Phys Oceanogr 5:572–584CrossRefGoogle Scholar
  45. Yuan C, Tozuka T, Landman W, Yamagata T (2014) Dynamical seasonal prediction of Southern African summer precipitation. Clim Dyn 42:3357–3374CrossRefGoogle Scholar
  46. Zinke J, Pfeiffer M, Timm O, Dullo WC, Brummer GJA (2009) Western Indian Ocean marine and terrestrial records of climate variability: a review and new concepts on land-ocean interaction since A.D. 1660. Int J Earth Sci 98:115–131. doi: 10.007/s00531-008-0365-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA)  2016

Authors and Affiliations

  1. 1.NOAA Earth System Research Laboratory Physical Sciences DivisionBoulderUSA
  2. 2.Department of GeographyUniversity of California Santa BarbaraSanta BarbaraUSA
  3. 3.Earth Resources Observation and Science CenterU.S. Geological SurveySioux FallsUSA
  4. 4.Institut für Geologische WissenschaftenFreie Universität BerlinBerlinGermany
  5. 5.Department of Environment and AgricultureCurtin University of TechnologyBentleyAustralia
  6. 6.Australian Institute of Marine ScienceCape FergusonAustralia
  7. 7.School of Geography, Archaeology and Environmental StudiesUniversity of WitwatersrandJohannesburgSouth Africa

Personalised recommendations