Climate Dynamics

, Volume 48, Issue 7–8, pp 2471–2488 | Cite as

Boreal winter Arctic Oscillation as an indicator of summer SST anomalies over the western tropical Indian Ocean

  • Dao-Yi Gong
  • Dong Guo
  • Yongqi Gao
  • Jing Yang
  • Rui Mao
  • Jingxuan Qu
  • Miaoni Gao
  • Sang Li
  • Seong-Joong Kim


The inter-annual relationship between the boreal winter Arctic Oscillation (AO) and summer sea surface temperature (SST) over the western tropical Indian Ocean (TIO) for the period from 1979 to 2015 is investigated. The results show that the January–February–March AO is significantly correlated with the June–July–August SST and SST tendency. When both El Niño/Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) variance are excluded, the winter AO is significantly correlated with the regional mean SST of the western TIO (40\(^\circ\)\(60^\circ\)E and \(10^\circ\)S–\(10^\circ\)N), \(r=0.71\). The multi-month SST tendency, i.e., the SST difference of June–July–August minus April–May, is correlated with the winter AO at \(r=0.75\). Composite analysis indicates similar warming over the western TIO. Two statistical models are established to predict the subsequent summer’s SST and SST tendency. The models use the winter AO, the winter ENSO and the autumn-winter IOD indexes as predictors and explain 65 and 62 % of the variance of the subsequent summer’s SST and SST tendency, respectively. Investigation of the regional air–sea fluxes and oceanic dynamics reveals that the net surface heat flux cannot account for the warming, whereas the oceanic Rossby wave plays a predominant role. During positive AO winters, the enhanced Arabian High causes stronger northern winds in the northern Indian Ocean and leads to anomalous cross-equatorial air-flow. The Ekman pumping in association with the anomalous wind stress curl in the central TIO generates a significantly deeper thermocline and above-normal sea surface height at 60\(^\circ\)–75\(^\circ\)E and 5\(^\circ\)\(10^\circ\)S. The winter AO-forced Rossby wave propagates westward and arrives at the western coast in summer, resulting in the significant SST increase. Forced by the observed winter AO-related wind stress anomalies over the Indian Ocean, the ocean model reasonably reproduces the Rossby wave as well as the resulting surface ocean warming over the western TIO in the subsequent summer. Observational analysis and numerical experiments suggest the importance of the oceanic dynamics in connecting the winter AO and summer SST anomalies.


Winter Arctic Oscillation Summer SST Tropical Indian Ocean Prediction model 



This study was supported by projects of NSFC-41375071, NSFC-41321001, and 2012GB955401. SJ Kim was supported by project PE16010 of the Korea Polar Research Institute. The SODA datasets were obtained from The air–sea flux data were provided by the WHOI OAFlux project ( which was funded by the NOAA Climate Observations and Monitoring program. The ERSST and OISST data were provided by the NOAA/OAR/ESRL PSD from their Web site at The comments and suggestions from two anonymous reviewers were helpful in improving the manuscript.


  1. Annamalai H, Liu P, Xie S-P (2005) Southwest Indian Ocean SST variability: its local effects and remote influence on Asian monsoons. J Clim 18:4150–4167CrossRefGoogle Scholar
  2. Arlot S, Celisse A (2010) A survey of cross-validation procedures for model selection. Stat Surv 4:40–79CrossRefGoogle Scholar
  3. Bleck R, Rooth C, Hu D, Smith LT (1992) Salinity-driven thermocline transients in a wind-and thermohaline-forced isopycnic coordinate model of the North Atlantic. J Phys Oceanogr 22:1486–1505CrossRefGoogle Scholar
  4. Carton JA, Giese BS (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136:2999–3017CrossRefGoogle Scholar
  5. Cayan DR (1992) Latent and sensible heat flux anomalies over the northern oceans: driving the sea surface temperature. J Phys Oceanogr 22:859–881CrossRefGoogle Scholar
  6. Chakravorty S, Gnanaseelan C, Chowdary JS, Luo J-J (2014) Relative role of El Niño and IOD forcing on the southern tropical Indian Ocean Rossby waves. J Geophys Res Oceans 119:5105–5122. doi: 10.1002/C009713 CrossRefGoogle Scholar
  7. Chakravorty S, Chowdary JS, Gnanaseelan C (2013) Spring asymmetric mode in the tropical Indian Ocean: role of El Niño and IOD. Clim Dyn 40(5–6):1467–1481. doi: 10.1007/s00382-012-1340-1 CrossRefGoogle Scholar
  8. Chakravorty S, Gnanaseelan C, Pillai PA (2016) Combined influence of remote and local SST forcing on Indian Summer Monsoon Rainfall variability. Clim Dyn. doi: 10.1007/s00382-016-2999-5 Google Scholar
  9. Chelton DB, deSzoeke RA, Schlax MG, El Naggar K, Siwertz N (1998) Geographical variability of the first baroclinic Rossby radius of deformation. J Phys Oceanogr 28:433–460CrossRefGoogle Scholar
  10. Chen S, Yu B, Chen W (2014) An analysis on the physical process of the influence of AO on ENSO. Clim Dyn 42:973–989CrossRefGoogle Scholar
  11. Chen S, Yu B, Chen W (2015a) An interdecadal change in the influence of the spring Arctic Oscillation on the subsequent ENSO around the early 1970s. Clim Dyn 44:1109–1126CrossRefGoogle Scholar
  12. Chen S, Wu R, Chen W, Yu B (2015b) Influence of the November Arctic Oscillation on the subsequent tropical Pacific sea surface temperature. Int J Climatol. doi: 10.1002/joc.4228 Google Scholar
  13. Chowdary JS, Gnanaseelan C, Xie SP (2009) Westward propagation of barrier layer formation in the 2006–07 Rossby wave event over the tropical southwest Indian Ocean. Geophys Res Lett 36:L04607. doi: 10.1029/2008GL036642 CrossRefGoogle Scholar
  14. de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi: 10.1029/2004JC002378 CrossRefGoogle Scholar
  15. Du Y, Xie S-P, Huang G, Hu K (2009) Role of air–sea interaction in the long persistence of El Niño-induced North Indian Ocean warming. J Clim 22:2023–2038CrossRefGoogle Scholar
  16. Du Y, Xie SP (2008) Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys Res Lett. doi: 10.1029/2008GL033631 Google Scholar
  17. Furevik T, Bentsen M, Drange H, Kindem I, Kvamstø NG, Sorteberg A (2003) Description and validation of the Bergen Climate Model: ARPEGE coupled with MICOM. Clim Dyn 21:27–51CrossRefGoogle Scholar
  18. Gnanaseelan C, Vaid BH (2010) Interannual variability in the biannual Rossby waves in the tropical Indian Ocean and its relation to Indian Ocean dipole and El Niño forcing. Ocean Dyn 60(1):27–40CrossRefGoogle Scholar
  19. Gong D-Y, Gao Y, Guo D, Mao R, Yang J, Hu M, Gao M (2014) Interannual linkage between Arctic/North Atlantic Oscillation and tropical Indian Ocean precipitation during boreal winter. Clim Dyn 42:1007–1027. doi: 10.1007/s00382-013-1681-4 CrossRefGoogle Scholar
  20. Gong D-Y, Yang J, Kim S-J, Gao Y, Guo D, Zhou T, Hu M (2011) Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific. Clim Dyn 37:2199–2216. doi: 10.1007/s00382-011-1041-1 CrossRefGoogle Scholar
  21. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  22. Huang B, Kinter JL III (2002) The interannual variability in the tropical Indian Ocean. J Geophys Res 107(C11):3199. doi: 10.1029/2001JC001278 CrossRefGoogle Scholar
  23. Izumo T, Montégut CB, Luo J-J, Behera SK, Masson S, Yamagata T (2008) The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J Clim 21:5603–5623CrossRefGoogle Scholar
  24. Jiang X, Yang S, Li J, Li Y, Hu H, Lian Y (2013) Variability of the Indian Ocean SST and its possible impact on summer western North Pacific anticyclone in the NCEP Climate Forecast System. Clim Dyn 41(7–8):2199–2212CrossRefGoogle Scholar
  25. Jury MR, Huang B (2004) The Rossby wave as a key mechanism of Indian Ocean climate variability. Deep-Sea Res I 51:2123–2136CrossRefGoogle Scholar
  26. Keerthi MG, Lengaigne M, Vialard J, de Boyer Montégut C, Muraleedharan PM (2013) Interannual variability of the Tropical Indian Ocean mixed layer depth. Clim Dyn 40:743–759CrossRefGoogle Scholar
  27. Kug J-S, Jin F-F, An S-I (2009) Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515. doi: 10.1175/2008JCLI2624.1 CrossRefGoogle Scholar
  28. Kumar BP, Vialard J, Lengaigne M, Murty VSN, Foltz GR, McPhaden MJ, Pous S, de Boyer Montégut C (2014) Processes of interannual mixed layer temperature variability in the thermocline ridge of the Indian Ocean. Clim Dyn 43(9):2377–2397. doi: 10.1007/s00382-014-2059-y CrossRefGoogle Scholar
  29. Lin H, Brunet G, Derome J (2009) An observed connection between the North Atlantic Oscillation and the Madden–Julian Oscillation. J Clim 22:364–380CrossRefGoogle Scholar
  30. Lin H, Brunet G (2011) Impact of the North Atlantic Oscillation on the forecast skill of the Madden–Julian Oscillation. Geophys Res Lett 38:L02802. doi: 10.1029/2010GL046131 Google Scholar
  31. Li G, Xie S-P, Du Y (2015) Climate model errors over the South Indian Ocean thermocline dome and their effect on the basin mode of interannual variability. J Clim 28:3093–3098CrossRefGoogle Scholar
  32. Li T, Zhang Y, Lu E, Wang D (2002) Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: an OGCM diagnosis. Geophys Res Lett 29:2110. doi: 10.1029/2002GL015789 Google Scholar
  33. Li Y, Wang B, Chang C-P, Zhang Y (2003) A theory for the Indian Ocean dipole-zonal mode. J Atmos Sci 60:2119–2135CrossRefGoogle Scholar
  34. Luo FS, Li S, Furevik T (2011) The connection between the Atlantic Multidecadal Oscillation and the Indian summer monsoon in Bergen Climate Model Version 2.0. J Geophys Res 116:D19117. doi: 10.1029/2011JD015848 CrossRefGoogle Scholar
  35. Manola I, Selten FM, de Ruijter WPM, Hazeleger W (2015) The ocean–atmosphere response to wind-induced thermocline changes in the tropical South Western Indian Ocean. Clim Dyn 45:989–1007CrossRefGoogle Scholar
  36. Masumoto Y, Meyers G (1998) Forced Rossby waves in the southern tropical Indian Ocean. J Geophys Res 103:27589–27602CrossRefGoogle Scholar
  37. McPhaden MJ, Nagura M (2014) Indian Ocean Dipole interpreted in terms of Recharge Oscillator theory. Clim Dyn 42:1569–1586. doi: 10.1007/s00382-013-1765-1 CrossRefGoogle Scholar
  38. Nagura M, McPhaden MJ (2010) Wyrtki Jet dynamics: seasonal variability. J Geophys Res 115:C07009. doi: 10.1029/2009JC005922 Google Scholar
  39. Nakamura T, Tachibana Y, Honda M, Yamane S (2006) Influence of the northern hemisphere annular mode on ENSO by modulating westerly wind bursts. Geophys Res Lett 33:L07709. doi: 10.1029/2005GL025432 Google Scholar
  40. Meehl GA, Arblaster JM, Loschnigg J (2003) Coupled ocean–atmosphere dynamical processes in the tropical Indian and Pacific Oceans and the TBO. J Clim 16:2138–2158CrossRefGoogle Scholar
  41. NRC (National Research Council of the National Academies) (2010) Assessment of intraseasonal to interannual climate prediction and predictability. National Academies Press, Washington, DCGoogle Scholar
  42. Otterå OH, Bentsen M, Bethke I, Kvamstø NG (2009) Simulated pre-industrial climate in Bergen Climate Model (version 2): model description and large-scale circulation features. Geosci Model Dev 2:197–212CrossRefGoogle Scholar
  43. Pan LL, Li T (2008) Interactions between the tropical ISO and mid-latitude low-frequency flow. Clim Dyn 31:375–388CrossRefGoogle Scholar
  44. Rao SA, Dhakate AR, Saha SK, Mahapatra S, Chaudhari HS, Pokhrel S, Sahu SK (2012) Why is Indian Ocean warming consistently? Clim Change 110:709–719. doi: 10.1007/s10584-011-0121-x CrossRefGoogle Scholar
  45. Rao SA, Behera SK (2005) Subsurface influence on SST in the tropical Indian Ocean: structure and interannual variability. Dyn Atmos Oceans 39:103–135CrossRefGoogle Scholar
  46. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  47. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363Google Scholar
  48. Sayantani O, Gnanaseelan C (2015) Tropical Indian Ocean subsurface temperature variability and the forcing mechanisms. Clim Dyn 44:2447–2462CrossRefGoogle Scholar
  49. Schott FA, Xie S-P, McCreary P Jr (2009) Indian Ocean circulation and climate variability. Rev Geophys 47:RG1002. doi: 10.1029/2007RG000245 CrossRefGoogle Scholar
  50. Seiki A, Katsumata M, Horii T, Hasegawa T, Richards KJ, Yoneyama K, Shirooka R (2013) Abrupt cooling associated with the oceanic Rossby wave and lateral advection during CINDY2011. J Geophys Res Oceans 118:5523–5535. doi: 10.1002/jgrc.20381 CrossRefGoogle Scholar
  51. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  52. Taschetto AS, Ambrizzi T (2012) Can Indian Ocean SST anomalies influence South American rainfall? Clim Dyn 38:1615–1628CrossRefGoogle Scholar
  53. Taschetto AS, Gupta AS, Hendon HH, Ummenhofer CC, England MH (2011) The contribution of Indian Ocean sea surface temperature anomalies on Australian summer rainfall during El Niño events. J Clim 24(14):3734–3747CrossRefGoogle Scholar
  54. Trenary LL, Han W (2012) Intraseasonal-to-interannual variability of South Indian Ocean sea level and thermocline: remote versus local forcing. J Phys Oceanogr 42:602–607CrossRefGoogle Scholar
  55. Tozuka T, Nagura M, Yamagata T (2014) Influence of the reflected Rossby waves on the western Arabian Sea upwelling region. J Phys Oceanogr 44:1424–1438CrossRefGoogle Scholar
  56. Vasala V (2008) First and second baroclinic mode response of the tropical Indian Ocean to interannual equatorial wind anomalies. J Oceanogr 64:479–494CrossRefGoogle Scholar
  57. Wang X, Jiang X, Yang S, Li Y (2013) Different impacts of the two types of El Niño on Asian summer monsoon onset. Environ Res Lett 8(4):044053. doi: 10.1088/1748-9326/8/4/044053 CrossRefGoogle Scholar
  58. Webber BGM, Matthews AJ, Heywood KJ (2010) A dynamical ocean feedback mechanism for the Madden–Julian Oscillation. Q J R Meteorol Soc 136:740–754Google Scholar
  59. Webber BGM, Matthews AJ, Heywood KJ, Stevens DP (2012) Ocean Rossby waves as a triggering mechanism for primary Madden–Julian events. Q J R Meteorol Soc 138:514–527CrossRefGoogle Scholar
  60. Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401:356–360CrossRefGoogle Scholar
  61. Weng H, Ashok K, Behera SK, Rao SA, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29:113–129. doi: 10.1007/s00382-007-0234-0 CrossRefGoogle Scholar
  62. Wilks DS (2011) Statistical methods in the atmospheric sciences, 3rd edn. Academic Press, LondonGoogle Scholar
  63. Wu Q (2010) Forcing of tropical SST anomalies by wintertime AO-like variability. J Clim 23:2465–2472CrossRefGoogle Scholar
  64. Wu R, Kirtman BP, Krishnamurthy V (2008) An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J Geophys Res 113:D05104. doi: 10.1029/2009/2007jd009316 CrossRefGoogle Scholar
  65. Wu R, Yeh S-W (2010) A further study of the tropical Indian Ocean asymmetric mode in boreal spring. J Geophys Res 115:D08101. doi: 10.1029/2009jd012999 Google Scholar
  66. Wu R, Hu W (2015) Air-sea relationship association with precipitation anomaly changes and mean precipitation anomaly over the South China Sea and the Arabian Sea during the spring to summer transition. J Clim 28:7161–7181CrossRefGoogle Scholar
  67. Xiang B, Yu W, Li T, Wang B (2011) The critical role of the boreal summer mean state in the development of the IOD. Geophys Res Lett 38:L02710. doi: 10.1029/2010GL045851 CrossRefGoogle Scholar
  68. Xie S-P, Annamalai H, Schott FA, McCreary JP (2002) Structure and mechanisms of south Indian Ocean climate variability. J Clim 15:867–878CrossRefGoogle Scholar
  69. Xie S-P, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J Clim 22:730–747CrossRefGoogle Scholar
  70. Yu W, Xiang B, Liu L, Liu N (2005) Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophys Res Lett 32:L24706. doi: 10.1029/2005GL024327 CrossRefGoogle Scholar
  71. Yu L, Jin X, Weller RA (2008) Multidecade global flux datasets from the Objectively Analyzed Air-Sea Fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution OAFlux Project Tech. Rep. OA-2008-01, 64 ppGoogle Scholar
  72. Yuan J, Feldstein SB, Lee S, Tan B (2011) The relationship between the North Atlantic jet and tropical convection over the Indian and western Pacific Oceans. J Clim 24:6100–6113CrossRefGoogle Scholar
  73. Zhou S, Miller AJ (2005) The interaction of the Madden–Julian Oscillation and the Arctic Oscillation. J Clim 18:143–159CrossRefGoogle Scholar
  74. Zhu J, Huang B, Kumar A, Kinter JL III (2015) Seasonality in prediction skill and predictable pattern of tropical Indian Ocean SST. J Clim 28:7962–7984CrossRefGoogle Scholar
  75. Zhuang W, Feng M, Du Y, Schiller A, Wang D (2013) Low-frequency sea level variability in the southern Indian Ocean and its impacts on the oceanic meridional transports. J Geophys Res Oceans 118:1302–1315. doi: 10.1002/jgrc.20129 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Dao-Yi Gong
    • 1
  • Dong Guo
    • 2
  • Yongqi Gao
    • 3
    • 4
  • Jing Yang
    • 1
  • Rui Mao
    • 1
  • Jingxuan Qu
    • 1
  • Miaoni Gao
    • 1
  • Sang Li
    • 1
  • Seong-Joong Kim
    • 5
  1. 1.State Key Laboratory of Earth Surface Processes and Resource EcologyBeijing Normal UniversityBeijingChina
  2. 2.Climate Change Research CenterChinese Academy of SciencesBeijingChina
  3. 3.Nansen-Zhu International Research CenterIAP/CASBeijingChina
  4. 4.Nansen Environmental and Remote Sensing Center/Bjerknes Center for Climate ResearchBergenNorway
  5. 5.Division of Polar Climate ChangeKorea Polar Research InstituteIncheonSouth Korea

Personalised recommendations