Climate Dynamics

, Volume 48, Issue 7–8, pp 2393–2404 | Cite as

A GCM investigation of impact of aerosols on the precipitation in Amazon during the dry to wet transition

  • Yu Gu
  • K. N. Liou
  • J. H. Jiang
  • R. Fu
  • Sarah Lu
  • Y. Xue


The climatic effects of aerosols on the precipitation over the Amazon during the dry to wet transition period have been investigated using an atmospheric general circulation model, NCEP/AGCM, and the aerosol climatology data. We found increased instability during the dry season and delayed wet season onset with aerosols included in the model simulation, leading to the delay of the maximum precipitation over the Amazon by about half a month. In particular, our GCM simulations show that surface solar flux is reduced in the Amazon due to the absorption and scattering of the solar radiation by aerosols, leading to decreased surface temperature. Reduced surface solar flux is balanced by decreases in both surface sensible heat and latent heat fluxes. During the wet season, the subtropical system over the Amazon has a shallower convection. With the inclusion of aerosols in the simulation, precipitation in the rainy season over the Amazon decreases in the major rainfall band, which partially corrects the overestimate of the simulated precipitation in that region. The reduced surface temperature by aerosols is also coupled with a warming in the middle troposphere, leading to increased atmosphere stability and moisture divergence over the Amazon. However, during the dry season when the convective system is stronger over the Amazon, rainfall increases in that region due to the warming of the air over the upper troposphere produced by biomass burning aerosols, which produces an anomalous upward motion and a convergence of moisture flux over the Amazon and draws the moisture and precipitation further inland. Therefore, aerosol effects on precipitation depend on the large-scale atmospheric stability, resulting in their different roles over the Amazon during the dry and wet seasons.


Outgoing Longwave Radiation Atmospheric General Circulation Model Simulated Precipitation Aerosol Effect Surface Solar Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors appreciate the funding support by the GoAmazon project Award Number DE-SC0011117, NASA ROSES14-ACMAP programs, and NSF Grants AGS-1419526. Author J.H.J. also acknowledge the support from the NASA-sponsored Jet Propulsion Laboratory, California Institute of Technology.


  1. Boisier JP, Ciais P, Ducharne A, Guibmerteau M (2015) Projected strengthening of Amazonian dry season by constrained climate model simulations. Nat Clim Change 5:656–660. doi: 10.1038/nclimate2658 CrossRefGoogle Scholar
  2. Butt N, de Oliveira PA, Costa MH (2011) Evidence that deforestation affects the onset of the rainy season in Rondonia, Brazil. J Geophys Res Atmos 116(D11):D11120. doi: 10.1029/2010jd015174 CrossRefGoogle Scholar
  3. Chou MD, Suarez MJ, Ho CH, Yan MMH, Lee KT (1998) Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. J Clim 11:202–214CrossRefGoogle Scholar
  4. Coakley JA, Cess RD, Yurevich FB (1983) The effect of tropospheric aerosols on the earth’s radiation budget: a parameterization for climate models. J Atmos Sci 42:1408–1429Google Scholar
  5. Cox PM, Harris PP, Huntingford C, Betts RA, Collins M, Jones CD, Jupp TE, Marengo JA, Nobre CA (2008) Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature 453(7192):212–215CrossRefGoogle Scholar
  6. Fels SB, Schwarzkopf MD (1975) The simplified exchange approximation: a new method for radiative transfer calculations. J Atmos Sci 32:1475–1488CrossRefGoogle Scholar
  7. Fu R, Li W (2004) The influence of the land surface on the transition from dry to wet season in Amazonia. Theor Appl Climatol 78:97–110. doi: 10.1007/s00704-004-0046-7 CrossRefGoogle Scholar
  8. Fu R, Dickinson RE, Chen M, Wang H (2001) How do tropical sea surface temperatures influence the seasonal distribution of precipitation in the equatorial Amazon? J Clim 14(20):4003–4026. doi: 10.1175/1520-0442(2001)014<4003:hdtsst>;2 CrossRefGoogle Scholar
  9. Goncalves WA, Machado LAT, Kirstetter PE (2015) Influence of biomass aerosol on precipitation over the Central Amazon: an observational study. Atmos Chem Phys 15:6789–6800. doi: 10.5194/acp-15-6789-2015 CrossRefGoogle Scholar
  10. Greco S, Swap R, Garstang M, Ulanski S, Shipham M, Harriss RC, Talbot R, Andreae MO, Artaxo P (1990) Rainfall and surface kinematic conditions over central Amazonia during ABLE 2B. J Geophys Res Atmos 95(D10):17001–17014. doi: 10.1029/JD095iD10p17001 CrossRefGoogle Scholar
  11. Gu Y, Liou KN, Xue Y, Mechoso CR, Li W, Luo Y (2006) Climatic effects of different aerosol types in China simulated by the UCLA general circulation model. J Geophys Res 111:D15201. doi: 10.1029/2005JD006312 CrossRefGoogle Scholar
  12. Gu Y, Liou KN, Chen W, Liao H (2010) Direct climate effect of black carbon in China and its impact on dust storm. J Geophys Res 115:D00K14. doi: 10.1029/2009JD013427 CrossRefGoogle Scholar
  13. Gu Y, Liou KN, Jiang JH, Su H, Liu X (2012) Dust aerosol impact on North Africa climate: a GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data. Atmos Chem Phys 12:1667–1679. doi: 10.5194/acp-12-1667-2012 CrossRefGoogle Scholar
  14. Gu Y, Xue Y, De Sales F, Liou KN (2016) A GCM investigation of dust aerosol impact on the regional climate of North Africa and South/East Asia. Clim Dyn 46:2353–2370. doi: 10.1007/s00382-015-2706-y CrossRefGoogle Scholar
  15. Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102:6831–6864CrossRefGoogle Scholar
  16. Hess M, Koepke P, Schult I (1998) Optical properties of aerosols and clouds: the software package OPAC. Bull Am Meteorol Soc 79:831–844CrossRefGoogle Scholar
  17. Heymsfield AJ, McFarquhar GM (1996) High albedos of cirrus in the tropical Pacific warm pool. J Atmos Sci 53:2424–2451CrossRefGoogle Scholar
  18. Hou YT, Campana KA, Yang SK (1996) Shortwave radiation calculations in the NCEP’s global model. In: International radiation symposium, IRS-96, August 19–24, Fairbanks, ALGoogle Scholar
  19. Hou YT, Moorthi S, Campana KA (2002) Parameterization of solar radiation transfer in the NCEP models. NCEP Office Note, 441.
  20. Jiang JH, Su H, Schoeberl M, Massie ST, Colarco P, Platnick S, Livesey N (2008) Clean and polluted clouds: relationships among pollution, ice cloud and precipitation in South America. Geophys Res Lett 35:L14804. doi: 10.1029/2008GL034631 CrossRefGoogle Scholar
  21. Jiang JH, Su H, Zhai C, Massie ST, Schoeberl MR, Colarco PR, Platnick S, Gu Y, Liou KN (2011) Influence of convection and aerosol pollution on ice cloud particle effective radius. Atmos Chem Phys 11:457–463. doi: 10.5194/acp-11-457-2011 CrossRefGoogle Scholar
  22. Johnson BT, Shine K, Forster P (2004) The semi-direct aerosol effect: impact of absorbing aerosols on marine stratocumulus. Q J R Meteorol Soc 130:1407–1422CrossRefGoogle Scholar
  23. Joseph JH, Wiscombe WJ, Weinman JA (1976) The delta-Eddington approximation for radiative flux transfer. J Atmos Sci 33:2452–2459CrossRefGoogle Scholar
  24. Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II Reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643CrossRefGoogle Scholar
  25. Kiehl JT, Hack JJ, Bonan GB, Boville BA, Williamson DL, Rasch PJ (1998) The national center for atmospheric research community climate model: CCM3. J Clim 11:1131–1149CrossRefGoogle Scholar
  26. Lau KM, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn 26:855–864. doi: 10.1007/s00382-006-0114-z CrossRefGoogle Scholar
  27. Lenters JD, Cook KH (1997) On the origin of the Bolivian high and related circulation features of the South American climate. J Atmos Sci 54:22CrossRefGoogle Scholar
  28. Lewis SL, Brando PM, Phillips OL, van der Heijden GMF, Nepstad D (2011) The 2010 Amazon drought. Science 331:6017. doi: 10.1126/science.1200807 CrossRefGoogle Scholar
  29. Li W, Fu R (2004) Transition of the large-scale atmospheric and land surface conditions from the dry to the wet season over Amazonia as diagnosed by the ECMWF re-analysis. J Clim 17:2637–2651CrossRefGoogle Scholar
  30. Liebmann B, Marengo JA (2001) Interannual variability of the rainy season and rainfall in the Brazilian Amazon Basin. J Clim 14:4308–4318CrossRefGoogle Scholar
  31. Machado LAT, Rossow WB, Guedes RL, Walker AW (1998) Life cycle variations of mesoscale convective systems over the Americas. Mon Weather Rev 126(6):1630–1654. doi: 10.1175/1520-0493(1998)126<1630:lcvomc>;2 CrossRefGoogle Scholar
  32. Marengo JA, Nobre CA, Tomasella J, Oyama MD, Sampaio de Oliveira G, de Oliveira R, Camargo H, Alves LM, Brown IF (2008) The drought of Amazonia in 2005. J Clim 21(3):495–516. doi: 10.1175/2007jcli1600.1 CrossRefGoogle Scholar
  33. Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez DA (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophys Res Lett. doi: 10.1029/2011gl047436 Google Scholar
  34. Martin ST, Andreae MO, Artaxo P, Baumgardner D, Chen Q, Goldstein AH, Guenther A, Heald CL, Mayol Bracero OL, McMurry PH, Pauliquevis T, Poschl U, Prather KA, Roberts GC, Saleska SR, Silva Dias MA, Spracklen DV, Swietlicki E, Trebs I (2010) Sources and proprieties of Amazonian aerosol particles. Rev Geophys 48(1–42):RG000280. doi: 10.1029/2008RG000280 Google Scholar
  35. Martins JA, Silva Dias MAF, Gonçalves FLT (2009) Impact of biomass burning aerosols on precipitation in the Amazon: a modeling case study. J Geophys Res 114:D02207. doi: 10.1029/2007JD009587 CrossRefGoogle Scholar
  36. Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253CrossRefGoogle Scholar
  37. Miller RL, Tegen I (1998) Climate response to soil dust aerosols. J Clim 11:3247–3267CrossRefGoogle Scholar
  38. Pan HL, Wu WS (1995) Implementing a mass flux convective parameterization package for the NMC medium-range forecast model. NMC Off Note 409, pp 40Google Scholar
  39. Petersen WA, Nesbitt SW, Blakeslee RJ, Cifelli R, Hein P, Rutledge SA (2002) TRMM observations of intraseasonal variability in convective regimes over the Amazon. J Clim 15(11):1278–1294. doi: 10.1175/1520--0442(2002)015<1278:tooivi>;2 CrossRefGoogle Scholar
  40. Petersen WA, Fu R, Chen M, Blakeslee R (2006) Intraseasonal forcing of convective and lightning activity in the southern Amazon as a function of cross-equatorial flow. J Clim 19:3180–3196CrossRefGoogle Scholar
  41. Rickenbach TM (2002) Modulation of convection in the southwestern Amazon basin by extratropical stationary fronts. J Geophys Res. doi: 10.1029/2000jd000263 Google Scholar
  42. Schwarzkopf MD, Fels SB (1991) The simplified exchange method revisited: an accurate, rapid method for computation of infrared cooling rates and fluxes. J Geophys Res 96(D5):9075–9096CrossRefGoogle Scholar
  43. Silva Dias MAF (2002) Cloud and rain processes in a biosphere–atmosphere interaction context in the Amazon Region. J Geophys Res. doi: 10.1029/2001jd000335 Google Scholar
  44. Sundqvist H, Berge E, Kristjansson JE (1989) Condensation and cloud studies with mesoscale numerical weather prediction model. Mon Weather Rev 117:1641–1757CrossRefGoogle Scholar
  45. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558CrossRefGoogle Scholar
  46. Xu KM, Randall DA (1996) A semi-empirical cloudiness parameterization for use in climate models. J Atmos Sci 53:3084–3102CrossRefGoogle Scholar
  47. Xue Y, Sellers PJ, Kinter JL III, Shukla J (1991) A simplified biosphere model for global climate studies. J Clim 4:345–364CrossRefGoogle Scholar
  48. Xue Y, Juang HMH, Li WP, Prince S, DeFries R, Jiao Y, Vasic R (2004) Role pf land surface processes in monsoon development: East Asia and West Africa. J Geophys Res 109:D03105. doi: 10.1029/2003JD003556 Google Scholar
  49. Zeng N, Yoon J-H, Marengo JA, Subramaniam A, Nobre CA, Mariotti A, Neelin JD (2008) Causes and impacts of the 2005 Amazon drought. Environ Res Lett 3(1):014002CrossRefGoogle Scholar
  50. Zhan X, Xue Y, Collatz GJ (2003) An analytical approach for estimating CO2 and heat fluxes over the Amazonian region. Ecol Model 162:97–117CrossRefGoogle Scholar
  51. Zhao QY, Carr FH (1997) A prognostic cloud scheme for operational NWP models. Mon Weather Rev 125:1931–1953CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yu Gu
    • 1
  • K. N. Liou
    • 1
  • J. H. Jiang
    • 2
  • R. Fu
    • 3
  • Sarah Lu
    • 4
  • Y. Xue
    • 5
  1. 1.Department of Atmospheric and Oceanic Science, Joint Institute for Regional Earth System Science and EngineeringUniversity of CaliforniaLos AngelesUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Jackson School of GeosciencesUniversity of Texas at AustinAustinUSA
  4. 4.University at Albany, State University of New YorkAlbanyUSA
  5. 5.Department of GeographyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations