Skip to main content

Advertisement

Log in

Unusual growth in intense typhoon occurrences over the Philippine Sea in September after the mid-2000s

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

During the global warming hiatus period (1998–present), a pronounced increase in the number of intense typhoon occurrences was identified over the Philippine Sea (PS: 5°–25°N, 125°–140°E) in September after the mid-2000s. Comparing two periods before and after the mid-2000s indicates that intense typhoons rarely occurred over the PS in September before the mid-2000s, with a frequency of fewer than 0.4 per year, but reached up to nearly 1.5 per year after the mid-2000s. The abrupt increase in intense typhoon occurrences over the PS was primarily attributed to increased tropical cyclone (TC) genesis and favorable large-scale conditions for TC intensification. The increase in TC genesis number over the PS was caused by contributory dynamical conditions, including positive low-level relative vorticity anomalies and anomalous ascents, which corresponded to a southwestward shift and strengthening of the monsoon trough. In addition, among the favorable large-scale conditions, the increased relative humidity that resulted from intensified moisture flux convergence exerted essential effect on the TC intensification. These changes in atmospheric environmental conditions favoring intense typhoon occurrences over the PS were primarily associated with the change in the tropical Indo-Pacific sea surface temperature (SST) around the mid-2000s. Besides that, the positive feedback TCs exerted on the circulation was also conducive to the unusual growth in intense typhoon occurrences over the PS. And note that the role of SST anomalies in the air–sea interaction is the key to interpret why the unique phenomenon only occurred in September.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Banacos PC, Schultz DM (2005) The use of moisture flux convergence in forecasting convective initiation: historical and operational perspectives. Weather Forecast 20:351–366

    Article  Google Scholar 

  • Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP. In: The Pacific Ocean. Eighth symposium on integrated observing and assimilation system for atmosphere, ocean, and land surface, AMS 84th annual meeting, Washington State Convention and Trade Center, Seattle, Washington, DC, pp 11–15

  • Bender MA, Ginis I (2000) Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: effects on hurricane intensity. Mon Weather Rev 128:917–946

    Article  Google Scholar 

  • Bister M, Emanuel KA (1998) Dissipative heating and hurricane intensity. Meteorol Atmos Phys 65:233–240. doi:10.1007/BF01030791

    Article  Google Scholar 

  • Briegel LM, Frank WM (1997) Large-scale influences on tropical cyclogenesis in the western North Pacific. Mon Weather Rev 125:1397–1413

    Article  Google Scholar 

  • Chan JCL (2005) Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteorol Atmos Phys 89:143–152

    Article  Google Scholar 

  • Chan JCL (2006) Comments on ‘‘Changes in tropical cyclone number, duration, and intensity in a warming environment’’. Science 311:1713b

    Article  Google Scholar 

  • Chan JCL (2008) Decadal variations of intense typhoon occurrence in the western North Pacific. Proc R Soc Lond 464A:249–272

    Article  Google Scholar 

  • Chavas DR, Emanuel KA (2010) A QuikSCAT climatology of tropical cyclone size. Geophys Res Lett 37:L18816. doi:10.1029/2010GL044558

    Article  Google Scholar 

  • Chen TC, Wang SY, Yen MC (2006) Interannual variation of the tropical cyclone activity over the western North Pacific. J Clim 19:5709–5720

    Article  Google Scholar 

  • Chia HH, Roplewski CF (2002) The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J Clim 15:2934–2944

    Article  Google Scholar 

  • Cione JJ, Uhlhorn EW (2003) Sea surface temperature variability in hurricanes: implications with respect to intensity change. Mon Weather Rev 131:1783–1796

    Article  Google Scholar 

  • Cione JJ, Kalina EA, Zhang JA, Uhlhorn EW (2013) Observations of air–sea interaction and intensity change in hurricanes. Mon Weather Rev 141:2368–2382

    Article  Google Scholar 

  • CMA (2015) China Meteorological Administration Tropical Cyclone Data Center western North Pacific best track data. http://tcdata.typhoon.gov.cn/en/zjljsjj_zlhq.html

  • Dee D et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Met Soc 137:535–597

    Article  Google Scholar 

  • Emanuel KA (1988) The maximum intensity of hurricanes. J Atmos Sci 45:1143–1155

    Article  Google Scholar 

  • Emanuel KA (1995) Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J Atmos Sci 52:3969–3976

    Article  Google Scholar 

  • Emanuel KA (1999) Thermodynamic control of hurricane intensity. Nature 401:665–669. doi:10.1038/44326

    Article  Google Scholar 

  • Emanuel KA (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688

    Article  Google Scholar 

  • Emanuel KA, Nolan DS (2004) Tropical cyclone activity and global climate. Preprints, 26th conference on hurricanes and tropical meteorology, Miami, FL. American Meteorological Society, pp 240–241

  • Emanuel KA, DesAutels C, Holloway C, Korty R (2004) Environmental control of tropical cyclone intensity. J Atmos Sci 61:843–858

    Article  Google Scholar 

  • Frank WM (1987) Tropical cyclone formation. In: Elsberry RL, Frank WM, Holland GJ, Jarell JD, Southern RL (eds) A global view of tropical cyclones. Naval Postgraduate School, Monterey, pp 53–90

    Google Scholar 

  • Frank WM, Ritchie EA (2001) Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon Weather Rev 129:2249–2269

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Gray WM (1968) Global view of the origin of tropical disturbances and storms. Mon Weather Rev 96:669–700

    Article  Google Scholar 

  • Gray WM (1975) Tropical cyclone genesis. Departmentt of Atmospheric Science, Paper No. 232, Colorado State University, Ft. Collins, CO, 121 pp

  • Gray WM (1979) Hurricanes: their formation, structure and likely role in the tropical circulation. In: Shaw DB (ed) Meteorology over the tropical oceans. Royal Meteorological Society, Berkshire, pp 155–218

  • He H, Yang J, Gong D-Y, Mao R, Wang Y, Gao MN (2015) Decadal changes in tropical cyclone activity over the western North Pacific in the late 1990s. Clim Dyn 45:3317–3329. doi:10.1007/s00382-015-2541-1

    Article  Google Scholar 

  • Hendricks EA, Peng MS, Fu B, Li T (2010) Quantifying environmental control on tropical cyclone intensity change. Mon Weather Rev 138:3243–3271

    Article  Google Scholar 

  • Holland GJ (1995) Scale interaction in the western Pacific monsoon. Meteorol Atmos Phys 56:57–79

    Article  Google Scholar 

  • Hong CC, Wu YK, Li T, Chang CC (2014) The climate regime shift over the Pacific during 1996/1997. Clim Dyn 43:435–446

    Article  Google Scholar 

  • Hsu H-H, Hung C-H, Lo A-K, Wu C-C, Hung C-W (2008) Influence of tropical cyclones on the estimation of climate variability in the tropical western north Pacific. J Clim 21:2960–2975

    Article  Google Scholar 

  • Hsu PC, Chu PS, Murakami H, Zhao X (2014) An abrupt decrease in the late-season typhoon activity over the western North Pacific. J Clim 27:4296–4312

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Morrissey MM, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multi-satellite observations. J Hydrometeor 2:36–50

    Article  Google Scholar 

  • JTWC (2015) The Joint Typhoon Warning Center western North Pacific best track data. http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/best_tracks/wpindex.php

  • Kamahori H, Yamazaki N, Mannoji N, Takahashi K (2006) Variability in intense tropical cyclone days in the western North Pacific. SOLA 2:104–107

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kaplan J, DeMaria M (2003) Large-scale characteristics of rapidly intensifying tropical cyclones in the north Atlantic basin. Weather Forecast 18:1093–1108

    Article  Google Scholar 

  • Kaplan J, DeMaria M, Knaff JA (2010) A revised tropical cyclone rapid intensification index for the Atlantic and East Pacific basins. Weather Forecast 25:220–241

    Article  Google Scholar 

  • Klotzbach PJ (2006) Trends in global tropical cyclone activity over the past twenty years (1986–2005). Geophys Res Lett 33:L10805. doi:10.1029/2006GL025881

    Article  Google Scholar 

  • Klotzbach PJ, Landsea CW (2015) Extremely intense hurricanes: revisiting Webster et al. (2005) after 10 years. J Clim 28:7621–7629. doi:10.1175/JCLI-D-15-0188.1

    Article  Google Scholar 

  • Knapp KR, Kossin JP (2007) New global tropical cyclone data from ISCCP B1 geostationary satellite observations. J Appl Remote Sens 1:13505–13510

    Article  Google Scholar 

  • Knapp KR, Kruk MC (2010) Quantifying interagency differences in tropical cyclone best-track wind speed estimations. Mon Weather Rev 138:1459–1473

    Article  Google Scholar 

  • Kossin JP, Knapp KR, Vimont DJ, Murnane RJ, Harper BA (2007) A globally consistent reanalysis of hurricane variability and trends. Geophys Res Lett 34:L04815. doi:10.1029/2006GL028836

    Article  Google Scholar 

  • Kossin JP, Olander TL, Knapp KR (2013) Trend analysis with a new global record of tropical cyclone intensity. J Clim 26:9960–9976. doi:10.1175/JCLI-D-13-00262.1

    Article  Google Scholar 

  • Kossin JP, Emanuel KA, Vecchi GA (2014) The poleward migration of the location of tropical cyclone maximum intensity. Nature 509:349–352

    Article  Google Scholar 

  • Lander MA (1996) Specific tropical cyclone track types and unusual tropical cyclone motions associated with a reverse-oriented monsoon trough in the western North Pacific. Weather Forecast 11:170–186

    Article  Google Scholar 

  • Landsea CW (2005) Hurricanes and global warming. Nature 438:E11–E12. doi:10.1038/nature04477

    Article  Google Scholar 

  • Landsea CW, Harper BA, Hoarau K, Knaff JA (2006) Can we detect trends in extreme tropical cyclones? Science 313:452–454

    Article  Google Scholar 

  • Lin I-I, Wu C-C, Emanuel KA, Lee I-H, Wu C-R, Pun I-F (2005) The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon Weather Rev 133:2635–2649. doi:10.1175/MWR3005.1

    Article  Google Scholar 

  • Lin I-I, Wu C-C, Pun I-F, Ko D-S (2008) Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: ocean features and the category 5 typhoons’ intensification. Mon Weather Rev 136:3288–3306. doi:10.1175/2008MWR2277.1

    Article  Google Scholar 

  • Lin I-I, Black P, Price JF, Yang C-Y, Chen SS, Lien C-C, Harr P, Chi N-H, Wu C-C, D’Asaro EA (2013) An ocean cooling potential intensity index for tropical cyclones. Geophys Res Lett 40:1878–1882. doi:10.1002/grl.50091

    Article  Google Scholar 

  • Lin I-I, Pun I-F, Lien C-C (2014) “Category-6” supertyphoon Haiyan in global warming hiatus: contribution from subsurface ocean warming. Geophys Res Lett. doi:10.1002/2014GL061281

    Google Scholar 

  • Lin Y, Zhao M, Zhang M (2015) Tropical cyclone rainfall area controlled by relative sea surface temperature. Nat Commun 6:6591. doi:10.1038/ncomms7591

    Article  Google Scholar 

  • Liu KS, Chan JCL (2013) Inactive period of western North Pacific tropical cyclone activity in 1998–2011. J Clim 26:2614–2630

    Article  Google Scholar 

  • McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys Res Lett 38:L15709. doi:10.1029/2011GL048275

    Article  Google Scholar 

  • Murakami H, Wang B (2010) Future change of North Atlantic tropical cyclone tracks: projection by a 20-km-mesh global atmospheric model. J Clim 23:2699–2721. doi:10.1175/2010JCLI3338.1

    Article  Google Scholar 

  • Peduzzi P, Chatenoux B, Dao H, De Bono A, Herold C, Kossin J, Mouton F, Nordbeck O (2012) Global trends in tropical cyclone risk. Nat Clim Chang 2:289–294. doi:10.1038/nclimate1410

    Article  Google Scholar 

  • Price JF (1981) Upper ocean response to a hurricane. J Phys Oceanogr 11:153–175

    Article  Google Scholar 

  • Price JF, Sanford TB, Forristall GZ (1994) Forced stage response to a moving hurricane. J Phys Oceanogr 24:233–260

    Article  Google Scholar 

  • Ramage CS (1974) Monsoonal influences on the annual variation of tropical cyclone development over the Indian and Pacific Oceans. Mon Weather Rev 102:745–753

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496

    Article  Google Scholar 

  • Rienecker MM, Suarez MJ, Gelaro R et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi:10.1175/JCLI-D-11-00015.1

    Article  Google Scholar 

  • Ritchie EA, Holland GJ (1999) Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon Weather Rev 127:2027–2043

    Article  Google Scholar 

  • Rodionov SN (2004) A sequential algorithm for testing climate regime shifts. Geophys Res Lett 31:L09204. doi:10.1029/2004GL019448

    Article  Google Scholar 

  • RSMC (2015) Regional Specialized Meteorological Centers–Tokyo Typhoon Center western North Pacific best track data. http://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/trackarchives.html

  • Saji HN, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Song JJ, Wang Y, Wu L (2010) Trend discrepancies among three best track data sets of western North Pacific tropical cyclones. J Geophys Res 115:D12128. doi:10.1029/2009JD013058

    Article  Google Scholar 

  • Song JJ, Han JJ, Li SJ, Wang Y, Wu L (2011) Re-examination of trends related to tropical cyclone activity over the western North Pacific basin. Adv Atmos Sci 28:699–708. doi:10.1007/s00376-010-0024-1

    Article  Google Scholar 

  • Tu JY, Chou C, Huang P, Huang R (2011) An abrupt increase of intense typhoons over the western North Pacific in early summer. Environ Res Lett 6:034013. doi:10.1088/1748-9326/6/3/034013

    Article  Google Scholar 

  • Wang B, Lin H (2002) Rainy season of the Asian-Pacific summer monsoon. J Clim 15:386–398

    Article  Google Scholar 

  • Wang B, Zhou X (2008) Climate variability and predictability of rapid intensification in tropical cyclones in the western North Pacific. Meteorol Atmos Phys 99:1–16

    Article  Google Scholar 

  • Wang B, Kang I-S, Lee J-Y (2004) Ensemble simulations of Asian-Australian monsoon variability by 11 AGCMs. J Clim 17:803–818

    Article  Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang H-R (2005) Changes in tropical cyclone number, duration and intensity in a warming environment. Science 309:1844–1846

    Article  Google Scholar 

  • Wu L, Wang B (2008) What has changed the proportion of intense hurricanes in the last 30 years. J Clim 21:1432–1438

    Article  Google Scholar 

  • Wu L, Zhao H (2012) Dynamically derived tropical cyclone intensity changes over the western North Pacific. J Clim 25:89–98. doi:10.1175/2011JCLI4139.1

    Article  Google Scholar 

  • Wu M-C, Yeung K-H, Chang W-L (2006) Trends in western North Pacific tropical cyclone intensity. EOS Trans Am Geophys Union 87:537–538. doi:10.1029/2006EO480001

    Article  Google Scholar 

  • Wu L, Su H, Fovell RG, Wang B, Shen JT, Kahn BH, Hristova-Veleva SM, Lambrigtsen BH, Fetzer EJ, Jiang JH (2012) Relationship of environmental relative humidity with North Atlantic tropical cyclone intensity and intensification rate. Geophys Res Lett 39:L20809. doi:10.1029/2012GL053546

    Article  Google Scholar 

  • Xu S, Wang B (2014) Enhanced western North Pacific tropical cyclone activity in May in recent years. Clim Dyn 42:2555–2563

    Article  Google Scholar 

  • Yu L, Jin X, Weller RA (2008) Multidecade global flux datasets from the objectively analyzed air–sea fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Technical Report, OA-2008-01, Woods Hole, MA, 64 p

  • Zhang Q, Liu Q, Wu L (2009) Tropical cyclone damages in China 1983–2006. Bull Am Meteorol Soc 90:489–495. doi:10.1175/2008BAMS2631.1

    Article  Google Scholar 

  • Zhao H, Wu L (2014) Inter-decadal shift of the prevailing tropical cyclone tracks over the western North Pacific and its mechanism study. Meteorol Atmos Phys 125:89–101

    Article  Google Scholar 

  • Zhao H, Wu L, Wang R (2014) Decadal variations of intense tropical cyclones over the Western North Pacific during 1948–2010. Adv Atmos Sci 31:57–65. doi:10.1007/s00376-013-3011-5

    Article  Google Scholar 

  • Zong H, Wu L (2015) Re-examination of tropical cyclone formation in monsoon troughs over the western North Pacific. Adv Atmos Sci 32:924–934

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Bo Wu for his constructive comments. This study was financially supported by the National Basic Research Program (‘973’ Program) of China (Grant No. 2012CB955401) and the National Natural Science Foundation of China (Grant Nos. 41375003 and 41321001). BW acknowledges the support from Climate Dynamics Program of the National Science Foundation under award No NOAA/DYNAMO # NA13OAR4310167 and the National Research Foundation (NRF) of Korea through a Global Research Laboratory (GRL) grant (MEST, #2011-0021927). This is the ESMC publication 110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Yang, J., Wu, L. et al. Unusual growth in intense typhoon occurrences over the Philippine Sea in September after the mid-2000s. Clim Dyn 48, 1893–1910 (2017). https://doi.org/10.1007/s00382-016-3181-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3181-9

Keywords