Skip to main content

Decadal climate prediction with a refined anomaly initialisation approach

Abstract

In decadal prediction, the objective is to exploit both the sources of predictability from the external radiative forcings and from the internal variability to provide the best possible climate information for the next decade. Predicting the climate system internal variability relies on initialising the climate model from observational estimates. We present a refined method of anomaly initialisation (AI) applied to the ocean and sea ice components of the global climate forecast model EC-Earth, with the following key innovations: (1) the use of a weight applied to the observed anomalies, in order to avoid the risk of introducing anomalies recorded in the observed climate, whose amplitude does not fit in the range of the internal variability generated by the model; (2) the AI of the ocean density, instead of calculating it from the anomaly initialised state of temperature and salinity. An experiment initialised with this refined AI method has been compared with a full field and standard AI experiment. Results show that the use of such refinements enhances the surface temperature skill over part of the North and South Atlantic, part of the South Pacific and the Mediterranean Sea for the first forecast year. However, part of such improvement is lost in the following forecast years. For the tropical Pacific surface temperature, the full field initialised experiment performs the best. The prediction of the Arctic sea-ice volume is improved by the refined AI method for the first three forecast years and the skill of the Atlantic multidecadal oscillation is significantly increased compared to a non-initialised forecast, along the whole forecast time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. The anomaly of a field is defined as its deviation from the mean state (climate), calculated over a period of at least 30 years (according to the World Meteorological Organisation definition).

  2. The function composition is the application of one function on top of another function and it is indicated with the symbol \(\circ\).

References

  • Anderson DLT, Doblas-Reyes FJ, Balmaseda M, Weisheimer A (2009) Decadal variability: processes, predictability and prediction. ECMWF Technical Memorandum 591. http://www.ecmwf.int/publications/library/do/references/show?id=89132

  • Bellucci A, Haarsma R, Gualdi S, Athanasiadis PJ, Caian M, Cassou C, Fernandez E, Germe A, Jungclaus J, Kroger J, Matei D, Muller W, Pohlmann H, Salas-Mélia D, Sanchez E, Smith D, Terray L, Wyser K, Yang S (2014) An assessment of a multi-model ensemble of decadal climate predictions. Clim Dyn 44:2787–2806. doi:10.1007/s00382-014-2164-y

    Article  Google Scholar 

  • Brodeau L, Barnier B, Treguier A, Penduff T, Gulev S (2009) An era40-based atmospheric forcing for global ocean circulation models. Ocean Model 31:88–104. doi:10.1016/j.ocemod.2009.10.005

    Article  Google Scholar 

  • Broecker WS (1997) Thermohaline circulation, the achilles heel of our climate system: will man-made \({\rm {co}}_{2}\) upset the current balance? Science 278(5343):1582–1588. doi:10.1126/science.278.5343.1582

    Article  Google Scholar 

  • Carrassi A, Weber RJT, Guemas V, Doblas-Reyes FJ, Asif M, Volpi D (2014) Full-field and anomaly initialization using a low-order climate model: a comparison and proposals for advanced formulations. Nonlinear Process Geophys 21:521–537. doi:10.5194/npg-21-521-2014

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kȧllbergc P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thpaut JN, Vitart F (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Deser C, Alexander MA, Xie SP, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Ann Rev Mar Sci 2:115–143. doi:10.1146/annurev-marine-120408-151453

    Article  Google Scholar 

  • Doblas-Reyes F, Andreu-Burillo I, Chikamoto Y, García-Serrano J, Guèmas V, Kimoto M, Mochizuki T, Rodrigues L, van Oldenborgh G (2013) Initialized near-term regional climate change prediction. Nat Commun. doi:10.1038/ncomms2704

    Google Scholar 

  • Du H, Doblas-Reyes FJ, García-Serrano J, Guèmas V, Soufflet Y, Wouters B (2012) Sensitivity of decadal predictions to the initial atmospheric and ocean perturbations. Clim Dyn. doi:10.1007/s00382-011-1285-9

    Google Scholar 

  • Ethe C, Aumont O, Foujols MA, Levy M (2006) Nemo reference manual, tracer component: Nemo-top. Preliminary version. Note du Pole de modlisation, Institut Pierre-Simon Laplace (IPSL) France 28:1288–1619

    Google Scholar 

  • Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12,609–12,646

    Article  Google Scholar 

  • García-Serrano J, Doblas-Reyes F (2012) On the assessment of near-surface global temperature and north atlantic multi-decadal variability in the ensembles decadal hindcast. Clim Dyn. doi:10.1007/s00382-012-1413-1

    Google Scholar 

  • Germe A, Chevallier M, Salas-Mélia D, Sanchez-Gomez E, Cassou C (2014) Interannual predictability of arctic sea ice in a gloabl climate model: regional contrasts and temporal evolution. Clim Dyn. doi:10.1007/s00382-014-2071-2

    Google Scholar 

  • Goosse H, Fichefet T (1999) Importance of ice–ocean interactions for the global ocean circulation: a model study. J Geophys Res 104:23,337–23,355

    Article  Google Scholar 

  • Guemas V, Doblas-Reyes F, Andreu-Burillo I, Asif M (2013) Retrospective prediction of the global warming slowdown in the past decade. Nat Clim Change 3:649–653

    Article  Google Scholar 

  • Guemas V, Doblas-Reyes F, Mogensen K, Keely S, Tang Y (2014) Ensemble of sea ice initial conditions for interannual climate predictions. Clim Dyn 43:2813–2829. doi:10.1007/s00382-014-2095-7

    Article  Google Scholar 

  • Hazeleger W, Severijns C, Semmler T, Stefânescu S, Yang S, Wang X, Wyser K, Dutra E, Baldasano JM, Bintanja R, Bougeault P, Caballero R, Ekman AML, Christensen JH, van den Hurk B, Jimenez P, Jones C, Kȧllberg P, Koenigk T, McGrath R, Miranda P, van Noije T, Palmer T, Parodi JA, Schmith T, Selten F, Storelvmo T, Sterl A, Tapamo H, Vancoppenolle M, Viterbo P, Willân U (2010) Ec-earth: a seamless earth-system prediction approach in action. Bull Am Meteorol Soc 91(10):1357–1363. doi:10.1175/2010BAMS2877.1

    Article  Google Scholar 

  • Hazeleger W, Guemas V, Wouters B, Corti S, Andreu-Burillo I, Doblas-Reyes FJ, Wyser K, Caian M (2013) Multiyear climate predictions using two initialization strategies. Geophys Res Lett 40(9):1794–1798. doi:10.1002/grl.50355

    Article  Google Scholar 

  • Kerr RA (2000) A north atlantic climate pacemaker for the centuries. Science 288(5473):1984–1985. doi:10.1126/science.288.5473.1984

    Article  Google Scholar 

  • Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett. doi:10.1029/2005GL024233

    Google Scholar 

  • Madec G (2008) Nemo ocean engine. Note du Pole de modlisation, Institut Pierre-Simon Laplace (IPSL) France 27:1288–1619

    Google Scholar 

  • Magnusson L, Leutbecher M, Kallen E (2008) Comparison between singular vectors and breeding vectors as initial perturbations for the ecmwf ensemble prediction system. Mon Weather Rev 134:4092–4104

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079

    Article  Google Scholar 

  • Matei D, Pohlmann H, Jungclaus J, Müller W, Haak H, Marotzke J (2012) Two tales of initializing decadal climate prediction experiments with the echam5/mpi-om model. J Clim 25:8502–8523. doi:10.1175/JCLI-D-11-00633.1

    Article  Google Scholar 

  • Meehl GA, Goddard L, Boer G, Burgman R, Branstator G, Cassou C, Corti S, Danabasoglu G, Doblas-Reyes F, Hawkins E, Karspeck A, Kimoto M, Kumar A, Matei D, Mignot J, Msadek R, Pohlmann H, Rienecker M, Rosati T, Schneider E, Smith D, Sutton R, Teng H, van Oldenborgh GJ, Vecchi GSY (2014) Decadal climate prediction: an update from the trenches. Bull Am Meteorol Soc 95:243–267. doi:10.1175/BAMS-D-12-00241.1

    Article  Google Scholar 

  • Mogensen K, Balmaseda MA, Weaver A (2012) The NEMOVAR ocean data assimilation as implemented in the ECMWF ocean analysis for System4. ECMWF tech memo, UK, p 668

  • Pohlmann H, Jungclaus J, Köhl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the gecco oceanic synthesis: effects on the north atlantic. J Clim 22:3926–3938

    Article  Google Scholar 

  • Robson JI (2010) Understanding the performance of a decadal prediction system. Ph.D. thesis, University of Reading, department of Meteorology

  • Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799

    Article  Google Scholar 

  • Smith T, Reynolds R, Peterson T, Lawrimore J (2008) Improvements to noaa’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Smith DM, Eade R, Pohlmann H (2013) A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Clim Dyn. doi:10.1007/s00382-013-1683-2

    Google Scholar 

  • Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett. doi:10.1029/2006GL026894

    Google Scholar 

  • Uppala SM, Källberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Berg LVD, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hlm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf J, Morcrette J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The era-40 reanalysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Valcke S (2006) Oasis3 user guide. PRISM support initiative report 3, p 64

  • Volpi D, Guemas V, Doblas-Reyes FJ (2016) Comparison of full field and anomaly initialisation for decadal climate prediction: towards an optimal consistency between the ocean and sea-ice anomaly initialisation state. Clim Dyn. Submitted: CLDY-D-15-00212

  • Von Storch H, Zwiers F (2001) Statistical analysis in climate research. Cambridge University Press, Cambridge, UK, p 484

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding support for this study from the SPECS (ENV-2012-308378) Project funded by the Seventh Framework Programme (FP7) of the European Commission and the PICA-ICE (CGL2012-31987) Project funded by the Ministry of Economy and Competitiveness of Spain. E.H. was also funded by the UK Natural Environment Research Council and N.K.N. was funded in part by the UK Natural Environment Research Council. D.V. gratefully acknowledges financial support from the University of Reading. The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by the Red Española de Supercomputación through the Barcelona Supercomputing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danila Volpi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 583 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Volpi, D., Guemas, V., Doblas-Reyes, F. et al. Decadal climate prediction with a refined anomaly initialisation approach. Clim Dyn 48, 1841–1853 (2017). https://doi.org/10.1007/s00382-016-3176-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3176-6

Keywords

  • Decadal climate prediction
  • Full field initialisation
  • Refined anomaly initialisation