Climate Dynamics

, Volume 48, Issue 5–6, pp 1793–1812 | Cite as

Energy budgets and transports: global evolution and spatial patterns during the twentieth century as estimated in two AMIP-like experiments

  • Valerio LemboEmail author
  • Doris Folini
  • Martin Wild
  • Piero Lionello


This study describes characteristics and evolution of the residual of the Earth energy budget (EB) individual components and the implied meridional transports during the twentieth century. This analysis considers two ensembles of AMIP-like experiments (Atmospheric Model Intercomparison Project) with prescribed evolution of sea surface temperature and sea ice concentration (SST-SIC), greenhouse gases (GHG), anthropogenic and volcanic aerosols over the entire twentieth century: ERA-20CM and ECHAM5-HAM model simulations. With the latter, additional sensitivity experiments are carried out by constraining either SST-SIC or aerosols to climatological values. The two models provide compatible estimates of the EBs and implied transport absolute values in recent decades. They are not in agreement in terms of global scale evolution: in the 1970s ERA-20CM shows a fast transition from negative to positive EBs at top of atmosphere (TOA) that is not found in ECHAM5-HAM. Climatological SST-SIC sensitivity experiments evidence that the aerosol forcing affects TOA and surface EBs by setting up an inter-hemispheric gradient after 1960. This is also reflected by an increased total transport in the Northern Hemisphere, while decreased in the Southern Hemisphere. ERA-20CM shows no evidence of a similar aerosol forcing. Sensitivity experiments with fixed pre-industrial aerosols show that transient SST are responsible for irregular spatio-temporal anomalies of surface and atmospheric EBs and transports. Surface and atmospheric anomalies oppose each other, and transient SSTs do not influence the EB changes at TOA. Impact of transient SST and GHG forcing on EBs and implied transports are robust across the two models.


Global energy budget Meridional energy transports Aerosol forcing ERA-20CM 



The authors wish to thank Dr. Hans Hersbach for useful contribution about some details of ERA-20CM settings. They also acknowledge Prof. Valerio Lucarini for precious comments on the current performance of coupled climate models in meridional energy transports description. Estimates of the partial correlation with the MIT technique have been computed by means of the TiGraMITe Python script, developed by Jakob Runge at PIK Potsdam.


  1. Allen RJ, Norris JR, Kovilakam M (2014) Influence of anthropogenic aerosols and the Pacific Decadal Oscillation on tropical belt width. Nat Geosci 7(April):270–274. doi: 10.1038/NGEO2091 CrossRefGoogle Scholar
  2. Berrisford P, Kållberg P, Kobayashi S et al (2011) Atmospheric conservation properties in ERA-interim. Q J R Meteorol Soc 137:1381–1399. doi: 10.1002/qj.864 CrossRefGoogle Scholar
  3. Bosilovich MG, Robertson FR, Chen J (2011) Global energy and water budgets in MERRA. J Clim 24:5721–5739. doi: 10.1175/2011JCLI4175.1 CrossRefGoogle Scholar
  4. Carissimo BC, Oort AH, Vonder Haar TH (1985) Estimating the meridional energy transports in the atmosphere and ocean. J Phys Oceanogr 15:82–91. doi: 10.1175/1520-0485(1985)015<0082:ETMETI>2.0.CO;2 CrossRefGoogle Scholar
  5. Chiang JCH, Friedman AR (2012) Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu Rev Earth Planet Sci 40:383–412. doi: 10.1146/annurev-earth-042711-105545 CrossRefGoogle Scholar
  6. Chiodo G, Haimberger L (2010) Interannual changes in mass consistent energy budgets from ERA-Interim and satellite data. J Geophys Res. doi: 10.1029/2009JD012049 Google Scholar
  7. Dallafior TN, Folini D, Knutti R et al (2015) Dimming over the oceans: transient anthropogenic aerosol plumes in the 20th century. J Geophys Res Atmos. doi: 10.1002/2014JD022658 Google Scholar
  8. Dee DP, Balmaseda M, Balsamo G et al (2013) Toward a consistent reanalysis of the climate system. Bull Am Meteorol Soc. doi: 10.1175/BAMS-D-13-00043.1 Google Scholar
  9. Fasullo JT, Trenberth KE (2008) The annual cycle of the energy budget. Part II: meridional structures and poleward transports. J Clim 21:2313–2325. doi: 10.1175/2007JCLI1936.1 CrossRefGoogle Scholar
  10. Folini D, Wild M (2011) Aerosol emissions and dimming/brightening in Europe: sensitivity studies with ECHAM5-HAM. J Geophys Res Atm 116(November):1–15. doi: 10.1029/2011JD016227 Google Scholar
  11. Folini D, Wild M (2015) The effect of aerosols and sea surface temperature on Chinas climate in late twentieth century from ensembles of global climate simulations. J Geophys Res Atmos. doi: 10.1002/2014JD022851 Google Scholar
  12. Gates WL (1992) AMIP: the atmospheric model intercomparison project. Bull Am Met Soc. doi: 10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2
  13. Hansen J, Sato M, Kharecha P et al (2011) Earths energy imbalance and implications. Atmos Chem Phys 11:13421–13449. doi: 10.5194/acp-11-13421-2011 CrossRefGoogle Scholar
  14. Held IM (2001) The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J Atmos Sci 58:943–948CrossRefGoogle Scholar
  15. Hersbach H, Peubey C, Simmons A et al (2015) ERA-20CM: a twentieth century atmospheric model ensemble. Q J R Meteorol Soc. doi: 10.1002/qj.2 Google Scholar
  16. Hill SA, Ming Y, Held IM (2014) Mechanisms of forced tropical meridional energy flux change. J Clim 28:1725–1742. doi: 10.1175/JCLI-D-14-00165.1 CrossRefGoogle Scholar
  17. Levitus S, Antonov JI, Boyer TP et al (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett. doi: 10.1029/2008GL037155 Google Scholar
  18. Loeb NG, Lyman JM, Johnson GC et al (2012) Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat Geosci 5:1–4. doi: 10.1038/ngeo1375 CrossRefGoogle Scholar
  19. Loeb NG, Kato S, Su W et al (2012) Advances in understanding top-of-atmosphere radiation variability from satellite observations. Surv Geophys 33:359–385. doi: 10.1007/s10712-012-9175-1 CrossRefGoogle Scholar
  20. Lohmann U, Stier P, Hoose C et al (2007) Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM. Atm Chem Phys 7:3425–3446. doi: 10.5194/acp-7-3425-2007 CrossRefGoogle Scholar
  21. Lucarini V, Blender R, Herbert C et al (2014) Mathematical and physical ideas for climate science. Rev Geophys 52:809–859. doi: 10.1002/2013RG000446 CrossRefGoogle Scholar
  22. Lucarini V, Ragone F (2011) Energetics of climate models: net energy balance and meridional enthalpy transport. Rev Geophys 49:RG1001. doi: 10.1029/2009RG000323 CrossRefGoogle Scholar
  23. Lyman JM, Good SA, Gouretski VV et al (2010) Robust warming of the global upper ocean. Nature 465:334–337. doi: 10.1038/nature09043 CrossRefGoogle Scholar
  24. Marshall J, Speer K (2012) Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat Geosci 5:171–180. doi: 10.1038/ngeo1391 CrossRefGoogle Scholar
  25. Mauritsen T, Stevens B, Roeckner E et al (2012) Tuning the climate of a global model. J Adv Model Earth Syst. doi: 10.1029/2012MS000154 Google Scholar
  26. Mayer M, Haimberger L (2012) Poleward atmospheric energy transports and their variability as evaluated from ECMWF reanalysis data. J Clim 25:734–752. doi: 10.1175/JCLI-D-11-00202.1 CrossRefGoogle Scholar
  27. Moss R, Babiker M, Brinkman S et al (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. Intergovernmental Panel on Climate Change, Geneva, p 132Google Scholar
  28. Nozawa T, Nagashima T, Ogura T et al (2007) Climate change simulations with a coupled ocean-atmosphere gcm called the model for interdisciplinary research on climate: MIROC, CGERs, Tech. rep. Natl. Inst. for Environ. Stud., JapanGoogle Scholar
  29. Ohmura A, Gilgen H, Hegner H et al (1998) Baseline surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bull Am Meteorol Soc 79:2115–2136. doi: 10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2 CrossRefGoogle Scholar
  30. Ohmura A, Gilgen H, Wild M (1989) Global Energy Balance Archive, GEBA: World Climate Program–Water, Project A7, Band 1Google Scholar
  31. Peixoto J, Oort A (1992) Physics of climate. Springer, New York, p 520Google Scholar
  32. Poli P, Hersbach H, Tan D, et al (2013) The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C). ERA Report Series 14, ECMWF Reading, p 59Google Scholar
  33. Rayner NA (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  34. Roeckner E, Bäuml G, Bonaventura L et al (2003) The atmospheric general circulation model ECHAM5: part 1: model description. Deutsches Klimarechenzentrum 349:1–140Google Scholar
  35. Roeckner E, Stier P, Feichter J et al (2006) Impact of carbonaceous aerosol emissions on regional climate change. Clim Dyn 27:553–571. doi: 10.1007/s00382-006-0147-3 CrossRefGoogle Scholar
  36. Roelofs G-J (2012) Aerosol lifetime and climate change. Atmos Chem Phys Discuss 12:16493–16514. doi: 10.5194/acpd-12-16493-2012 CrossRefGoogle Scholar
  37. Rotstayn LD, Lohmann U (2002) Tropical rainfall trends and the indirect aerosol effect. J Clim 15:2103–2116. doi: 10.1175/1520-0442(2002)015<2103:TRTATI>2.0.CO;2 CrossRefGoogle Scholar
  38. Runge J, Heitzig J, Marwan N et al (2012) Quantifying causal coupling strength: A lag-specific measure for multivariate time series related to transfer entropy. Phys Rev E 86:061121. doi: 10.1103/PhysRevE.86.061121 CrossRefGoogle Scholar
  39. Runge J, Petoukhov V, Kurths J (2014) Quantifying the strength and delay of climatic interactions: the ambiguities of cross correlation and a novel measure based on graphical models. J Clim 27:720–739. doi: 10.1175/JCLI-D-13-00159.1 CrossRefGoogle Scholar
  40. Sato M, Hansen JE, McCormick MP et al (1993) Stratospheric aerosol optical depths. J Geophys Res 98:22987. doi: 10.1029/93JD02553 1850–1990CrossRefGoogle Scholar
  41. Schneider T, Bischoff T, Haug GH (2014) Migrations and dynamics of the intertropical convergence zone. Nature 513:45–53. doi: 10.1038/nature13636 CrossRefGoogle Scholar
  42. Shindell D, Schulz M, Ming Y et al (2010) Spatial scales of climate response to inhomogeneous radiative forcing. J Geophys Res Atmos 115:1–10. doi: 10.1029/2010JD014108 CrossRefGoogle Scholar
  43. Shindell DT, Lamarque JF, Schulz M et al (2013) Radiative forcing in the ACCMIP historical and future climate simulations. Atmos Chem Phys 13:2939–2974. doi: 10.5194/acp-13-2939-2013 CrossRefGoogle Scholar
  44. Shindell DT (2014) Inhomogeneous forcing and transient climate sensitivity. Nat Clim Chang 4:18–21. doi: 10.1038/NCLIMATE2136 Google Scholar
  45. Speer K, Rintoul SR, Sloyan B (2000) The diabatic deacon cell. J Phys Oceanogr 30:3212–3222. doi: 10.1175/1520-0485(2000)030<3212:TDDC>2.0.CO;2 CrossRefGoogle Scholar
  46. Stier P, Feichter J, Kinne S et al (2005) The aerosol-climate model ECHAM5-HAM. Atmos Chem Phys 5:1125–1156. doi: 10.5194/acp-5-1125-2005 CrossRefGoogle Scholar
  47. Stocker TF, Qin D, Plattner G-K, et al (2013) IPCC, 2013: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC AR5:1535Google Scholar
  48. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  49. Titchner HA, Rayner NA (2014) The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J Geophys Res Atmos 119:2864–2889. doi: 10.1002/2013JD020316 CrossRefGoogle Scholar
  50. Trenberth KE, Fasullo JT, Kiehl J (2009) Earths global energy budget. Bull Am Meteorol Soc 90:311–323. doi: 10.1175/2008BAMS2634.1 CrossRefGoogle Scholar
  51. Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 14:3433CrossRefGoogle Scholar
  52. Trenberth KE, Solomon A (1994) The global heat-balance—heat transports in the atmosphere and ocean. Clim Dyn 10:107–134. doi: 10.1007/Bf00210625 CrossRefGoogle Scholar
  53. Trenberth KE, Stepaniak DP (2003a) Covariability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J Clim 16:3691–3705. doi: 10.1175/1520-0442(2003)016<3691:COCOPA>2.0.CO;2 CrossRefGoogle Scholar
  54. Trenberth KE, Stepaniak DP (2003b) Seamless poleward atmospheric energy transports and implications for the Hadley circulation. J Clim 16:3706–3722. doi: 10.1175/1520-0442(2003)016<3706:SPAETA>2.0.CO;2 CrossRefGoogle Scholar
  55. Wild M (2012) Enlightening global dimming and brightening. Bull Am Meteorol Soc 93:27–37. doi: 10.1175/BAMS-D-11-00074.1 CrossRefGoogle Scholar
  56. Wild M, Folini D, Schär C et al (2013) The global energy balance from a surface perspective. Clim Dyn 40:3107–3134. doi: 10.1007/s00382-012-1569-8 CrossRefGoogle Scholar
  57. Wild M, Folini D, Hakuba M et al (2015) The energy balance over land and sea : an assessment based on direct observations and CMIP5 models. Clim Dyn 44:3393–3429. doi: 10.1007/s00382-014-2430-z CrossRefGoogle Scholar
  58. Xie SP (2004) The shape of continents, air-sea interaction, and the rising branch of the Hadley circulation. In: Diaz HF, Bradley RS (eds) The Hadley circulation: present, past and future. doi: 10.1007/978-1-4020-2944-8
  59. Zhang YC, Rossow WB (1997) Estimating meridional energy transports by the atmospheric and oceanic general circulations using boundary fluxes. J Clim 10:2358–2373CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Valerio Lembo
    • 1
    Email author
  • Doris Folini
    • 2
  • Martin Wild
    • 2
  • Piero Lionello
    • 1
    • 3
  1. 1.Dipartimento di Scienze e Teconologie Biologiche e Ambientali (Di.S.Te.B.A.)Universitá del SalentoLecceItaly
  2. 2.Institute for Atmospheric and Climate Science, ETH Zurich Universitätstrasse 16ZurichSwitzerland
  3. 3.CMCC Euro-Mediterranean Center on Climate ChangeLecceItaly

Personalised recommendations