Climate Dynamics

, Volume 47, Issue 12, pp 3955–3977 | Cite as

Comparing COSMO-CLM simulations and MODIS data of snow cover extent and distribution over Italian Alps

  • Pierfrancesco Da Ronco
  • Carlo De Michele
  • Myriam Montesarchio
  • Paola Mercogliano


Snow cover maps from Earth Observation (EO) satellites are valuable datasets containing large-scale information on snow cover extent, snow cover distribution and snow cover duration. In evaluating the performances of Regional Climate Models, EO data can be a valid piece of information alternative to in-situ measurements, which require a dense network of stations covering the entire altitudinal range and techniques for interpolating the values. In this context, MODIS snow products play a leading role providing several types of snow cover maps with high spatial and temporal resolutions. Here, we assess snow cover outputs of a high resolution Regional Climate Model (RCM) using MODIS maps of snow covered area over the Po river basin, northern Italy. The dataset consists of 9 years of MODIS data (2003–2011) cleaned from cloud cover by means of a cloud removal procedure. The maps have 500 m spatial resolution and daily temporal resolution. The RCM considered is COSMO-CLM, run at 0.0715° resolution (about 8 km) and coupled with the soil module TERRA_ML. The ERA-Interim reanalyses are used as initial and boundary conditions. The results show a good agreement between observed and simulated snow cover duration and extension. COSMO-CLM is able to reproduce the inter-annual variabilities of snow cover features as well as the seasonal trend of snow cover duration and extension. Limitations emerge when the RCM simulates the progressive depletion of the snow cover in spring. Simulated snowmelt occurs faster than the observed one. Then, we investigate the influence of the spatial resolution of the climate model. The simulation at 0.0715° (about 8 km) is compared to a simulation performed at 0.125° (about 14 km). The comparison highlights the benefits provided by the higher spatial resolution in the accumulation season, reflecting the improvements obtained in temperature and precipitation fields.


COSMO-CLM MODIS Snow cover Alps Climate change RCM 



The research leading to these results has received funding from the Italian Ministry of Education, University and Research and the Italian Ministry of Environment, Land and Sea under GEMINA and NEXTDATA projects.


  1. Agrawala S et al (2007) Climate change in the European Alps: adapting winter tourism and natural hazards management, vol 2. OECD publishingGoogle Scholar
  2. Barnett T, Dümenil L, Schlese U, Roeckner E, Latif M (1989) The effect of Eurasian snow cover on regional and global climate variations. J Atmos Sci 46(5):661–686CrossRefGoogle Scholar
  3. Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438(7066):303–309CrossRefGoogle Scholar
  4. Bavay M, Lehning M, Jonas T, Löwe H (2009) Simulations of future snow cover and discharge in Alpine headwater catchments. Hydrol Process 23(1):95–108CrossRefGoogle Scholar
  5. Bavera D, De Michele C (2009) Snow water equivalent estimation in the Mallero basin using snow gauge data and MODIS images and fieldwork validation. Hydrol Process 23(14):1961–1972. doi: 10.1002/hyp.7328 CrossRefGoogle Scholar
  6. Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. In: Climate variability and change in high elevation regions: past, present and future. Springer, Dordrecht, pp 5–31. doi: 10.1007/978-94-015-1252-7_2
  7. Beniston M (2005) Mountain climates and climatic change: an overview of processes focusing on the European Alps. Pure Appl Geophys 162(8–9):1587–1606. doi: 10.1007/s00024-005-2684-9 CrossRefGoogle Scholar
  8. Beniston M, Rebetez M (1996) Regional behavior of minimum temperatures in Switzerland for the period 1979–1993. Theoret Appl Climatol 53(4):231–243. doi: 10.1007/BF00871739 CrossRefGoogle Scholar
  9. Beniston M, Keller F, Goyette S (2003) Snow pack in the Swiss Alps under changing climatic conditions: an empirical approach for climate impacts studies. Theoret Appl Climatol 74(1–2):19–31CrossRefGoogle Scholar
  10. Beniston M, Keller F, Koffi B, Goyette S (2003) Estimates of snow accumulation and volume in the Swiss Alps under changing climatic conditions. Theoret Appl Climatol 76(3–4):125–140CrossRefGoogle Scholar
  11. Brander D, Seidel K, Huggel C, Zurflueh M (2000) Snow cover duration maps in alpine regions from remote sensing data. In: Proceedings of EARSeL-SIG-Workshop Land Ice and Snow, vol 80, DresdenGoogle Scholar
  12. Brown RD, Mote PW (2009) The response of northern hemisphere snow cover to a changing climate. J Clim 22(8):2124–2145. doi: 10.1175/2008JCLI2665.1 CrossRefGoogle Scholar
  13. Brutel-Vuilmet C, Ménégoz M, Krinner G (2013) An analysis of present and future seasonal Northern Hemisphere land snow cover simulated by CMIP5 coupled climate models. Cryosphere 7(1):67–80. doi: 10.5194/tc-7-67-2013 CrossRefGoogle Scholar
  14. Bucchignani E, Sanna A, Gualdi S, Castellari S, Schiano P (2013) Simulation of the climate of the XX century in the Alpine space. Nat Hazards 67(3):981–990. doi: 10.1007/s11069-011-9883-8 CrossRefGoogle Scholar
  15. Bucchignani E, Montesarchio M, Zollo AL, Mercogliano P (2016) High resolution climate simulations with COSMO-CLM over Italy: performance evaluation and climate projections for the 21st century. Int J Climatol 36(2):735–756. doi: 10.1002/joc.4379 CrossRefGoogle Scholar
  16. Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci Model Dev 7(3):1247–1250. doi: 10.5194/gmd-7-1247-2014 CrossRefGoogle Scholar
  17. Chang ATC, Gloersen P, Schmugge T, Wilheit TT, Zwally HJ (1976) Microwave emission from snow and glacier ice. J Glacio 16:23–39Google Scholar
  18. Chang N, Hong Y (2012) Multiscale hydrologic remote sensing: perspectives and applications. CRC Press, Taylor & Francis Group, Boca RatonGoogle Scholar
  19. Christensen J, Christensen O (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81(1):7–30. doi: 10.1007/s10584-006-9210-7 CrossRefGoogle Scholar
  20. Christensen NS, Wood AW, Voisin N, Lettenmaier DP, Palmer RN (2004) The effects of climate change on the hydrology and water resources of the Colorado river basin. Clim Change 62(1–3):337–363CrossRefGoogle Scholar
  21. Clifford D (2010) Global estimates of snow water equivalent from passive microwave instruments: history, challenges and future developments. Int J Remote Sens 31(14):3707–3726. doi: 10.1080/01431161.2010.483482 CrossRefGoogle Scholar
  22. Cohen J, Rind D (1991) The effect of snow cover on the climate. J Clim 4(7):689–706CrossRefGoogle Scholar
  23. Comola F, Schaefli B, Da Ronco P, Botter G, Bavay M, Rinaldo A, Lehning M (2015) Scale-dependent effects of solar radiation patterns on the snow-dominated hydrologic response. Geophys Res Lett 42(10):3895–3902. doi: 10.1002/2015GL064075 CrossRefGoogle Scholar
  24. Da Ronco P, De Michele C (2014) Cloud obstruction and snow cover in Alpine areas from MODIS products. Hydrol Earth Syst Sci 18(11):4579–4600. doi: 10.5194/hess-18-4579-2014 CrossRefGoogle Scholar
  25. Davin E, Stöckli R, Jaeger E, Levis S, Seneviratne S (2011) COSMO-CLM2: a new version of the COSMO-CLM model coupled to the Community Land Model. Clim Dyn 37(9–10):1889–1907. doi: 10.1007/s00382-011-1019-z CrossRefGoogle Scholar
  26. Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597CrossRefGoogle Scholar
  27. Dietz AJ, Kuenzer C, Gessner U, Dech S (2012) Remote sensing of snow-a review of available methods. Int J Remote Sens 33(13):4094–4134CrossRefGoogle Scholar
  28. Doms G, Förstner J, Heise E, Herzog H, Mironov D, Raschendorfer M, Reinhardt T, Ritter B, Schrodin R, Schulz JP, Vogel G (2011) A description of the nonhydrostatic regional COSMO model. Part II: Physical parameterization. Deutscher WetterdienstGoogle Scholar
  29. Dozier J (1989) Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens Environ 28(0):9–22. doi: 10.1016/0034-4257(89)90101-6 CrossRefGoogle Scholar
  30. Dutra E, Kotlarski S, Viterbo P, Balsamo G, Miranda PMA, Schär C, Bissolli P, Jonas T (2011) Snow cover sensitivity to horizontal resolution, parameterizations, and atmospheric forcing in a land surface model. J Geophys Res Atmos 116(D21). doi: 10.1029/2011JD016061
  31. Elder K, Rosenthal W, Davis RE (1998) Estimating the spatial distribution of snow water equivalence in a montane watershed. Hydrol Process 12(10–11):1793–1808. doi: 10.1002/(SICI)1099-1085(199808/09)12:10/11<1793::AID-HYP695>3.0.CO;2-K CrossRefGoogle Scholar
  32. Elsasser H, Bürki R et al (2002) Climate change as a threat to tourism in the Alps. Clim Res 20(3):253–257CrossRefGoogle Scholar
  33. Erschbamer B, Kiebacher T, Mallaun M, Unterluggauer P (2009) Short-term signals of climate change along an altitudinal gradient in the South Alps. Plant Ecol 202(1):79–89CrossRefGoogle Scholar
  34. Feldmann H, Schädler G, Panitz HJ, Kottmeier C (2013) Near future changes of extreme precipitation over complex terrain in Central Europe derived from high resolution RCM ensemble simulations. Int J Climatol 33(8):1964–1977. doi: 10.1002/joc.3564 CrossRefGoogle Scholar
  35. Fletcher CG, Kushner PJ, Hall A, Qu X (2009) Circulation responses to snow albedo feedback in climate change. Geophys Res Lett 36(9):L09702. doi: 10.1029/2009GL038011
  36. Foppa N, Seiz G (2012) Inter-annual variations of snow days over Switzerland from 2000–2010 derived from MODIS satellite data. Cryosphere 6(2):331–342. doi: 10.5194/tc-6-331-2012 CrossRefGoogle Scholar
  37. Foppa N, Stoffel A, Meister R (2007) Synergy of in situ and space borne observation for snow depth mapping in the Swiss Alps. Int J Appl Earth Obs Geoinf 9(3):294–310. doi: 10.1016/j.jag.2006.10.001 CrossRefGoogle Scholar
  38. Foster JL, Sun C, Walker JP, Kelly R, Chang A, Dong J, Powell H (2005) Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sens Environ 94(2):187–203. doi: 10.1016/j.rse.2004.09.012 CrossRefGoogle Scholar
  39. Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27(12):1547–1578. doi: 10.1002/joc.1556 CrossRefGoogle Scholar
  40. Frei A, Tedesco M, Lee S, Foster J, Hall DK, Kelly R, Robinson DA (2012) A review of global satellite-derived snow products. Adv Space Res 50(8):1007–1029CrossRefGoogle Scholar
  41. Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res Atmos 108(D3). doi: 10.1029/2002JD002287
  42. Gafurov A, Bárdossy A (2009) Cloud removal methodology from MODIS snow cover product. Hydrol Earth Syst Sci 13(7):1361–1373.  10.5194/hess-13-1361-2009 CrossRefGoogle Scholar
  43. Gao Y, Xie H, Yao T (2011) Developing snow cover parameters maps from MODIS, AMSR-E, and blended snow products. Photogramm Eng Remote Sens 77(4):351–361CrossRefGoogle Scholar
  44. Gascoin S, Hagolle O, Huc M, Jarlan L, Dejoux JF, Szczypta C, Marti R, Sánchez R (2015) A snow cover climatology for the Pyrenees from MODIS snow products. Hydrol Earth Syst Sci 19(5):2337–2351. doi: 10.5194/hess-19-2337-2015 CrossRefGoogle Scholar
  45. Gesell G (1989) An algorithm for snow and ice detection using AVHRR data an extension to the APOLLO software package. Int J Remote Sens 10(4–5):897–905CrossRefGoogle Scholar
  46. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63(2):90–104CrossRefGoogle Scholar
  47. Giorgi F, Hurrell JW, Marinucci MR, Beniston M (1997) Elevation dependency of the surface climate change signal: a model study. J Clim 10(2):288–296CrossRefGoogle Scholar
  48. Giorgi F, Christensen J, Hulme M, von Storch H, Whetton P, Jones R, Mearns L, Fu C, Arritt R, Bates B, Benestad R, Boer G, Buishand A, Castro M, Chen D, Cramer W, Crane R, Crossly J, Dehn M, Dethloff K, Dippner J, Emori S, Francisco R, Fyfe J, Gerstengarbe F, Gutowski W, Gyalistras D, Hanssen-Bauer I, Hantel M, Hassell D, Heimann D, Jack C, Jacobeit J, Kato H, Katz R, Kauker F, Knutson T, Lal M, Landsea C, Laprise R, Leung L, Lynch A, May W, McGregor J, Miller N, Murphy J, Ribalaygua J, Rinke A, Rummukainen M, Semazzi F, Walsh K, Werner P, Widmann M, Wilby R, Wild M, Xue Y (2001) Regional Climate Information- Evaluation and Projections, Climate Change 2001: The Scientific Basis. In: [Houghton JT et al (eds)] Contribution of Working Group to the Third Assessment Report of the Intergouvernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York, p 881Google Scholar
  49. Giorgi F, Jones C, Asrar GR et al (2009) Addressing climate information needs at the regional level: the CORDEX framework. World meteorological organization (WMO). Bulletin 58(3):175Google Scholar
  50. Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M (2013) 21st century climate change in the European Alps—A review. Sci Total Environ 493:1138–1151. doi: 10.1016/j.scitotenv.2013.07.050 CrossRefGoogle Scholar
  51. Grasselt R, Schüttemeyer D, Warrach-Sagi K, Ament F, Simmer C (2008) Validation of TERRA-ML with discharge measurements. Meteorol Z 17(6):763–773. doi: 10.1127/0941-2948/2008/0334 CrossRefGoogle Scholar
  52. Haeberli W, Beniston M (1998) Climate change and its impacts on glaciers and permafrost in the Alps. Ambio 27(4):258–265Google Scholar
  53. Hall A (2004) The role of surface albedo feedback in climate. J Clim 17(7):1550–1568. doi: 10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2
  54. Hall DK, Riggs GA (2007) Accuracy assessment of the MODIS snow products. Hydrol Process 21(12):1534–1547CrossRefGoogle Scholar
  55. Hall DK, Riggs GA, Salomonson VV (1995) Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens Environ 54(2):127–140CrossRefGoogle Scholar
  56. Hall DK, Riggs GA, Salomonson VV, Barton J, Casey K, Chien J, DiGirolamo N, Klein A, Powell H, Tait A (2001) Algorithm theoretical basis document (ATBD) for the MODIS snow and sea ice-mapping algorithms. NASA GSFCGoogle Scholar
  57. Hall DK, Riggs GA, Salomonson VV, DiGirolamo NE, Bayr KJ (2002) MODIS snow-cover products. Remote Sens Environ 83(1):181–194CrossRefGoogle Scholar
  58. Hall DK, Riggs GA, Foster JL, Kumar SV (2010) Development and evaluation of a cloud-gap-filled MODIS daily snow-cover product. Remote Sens Environ 114(3):496–503. doi: 10.1016/j.rse.2009.10.007 CrossRefGoogle Scholar
  59. Hantel M, Hirtl-Wielke LM (2007) Sensitivity of Alpine snow cover to European temperature. Int J Climatol 27(10):1265–1275CrossRefGoogle Scholar
  60. Hantel M, Maurer C (2011) The median winter snowline in the Alps. Meteorol Z 20(3):267–276. doi: 10.1127/0941-2948/2011/0495 CrossRefGoogle Scholar
  61. Hantel M, Maurer C, Mayer D (2012) The snowline climate of the Alps 1961–2010. Theoret Appl Climatol 110(4):517–537. doi: 10.1007/s00704-012-0688-9 CrossRefGoogle Scholar
  62. Haslinger K, Anders I, Hofstätter M (2013) Regional climate modelling over complex terrain: an evaluation study of COSMO-CLM hindcast model runs for the Greater Alpine Region. Clim Dyn 40(1–2):511–529. doi: 10.1007/s00382-012-1452-7 CrossRefGoogle Scholar
  63. Hüsler F, Jonas T, Riffler M, Musial J, Wunderle S (2014) A satellite-based snow cover climatology (1985–2011) for the European Alps derived from AVHRR data. Cryosphere 8(1):73–90CrossRefGoogle Scholar
  64. Im ES, Coppola E, Giorgi F, Bi X (2010) Local effects of climate change over the Alpine region: a study with a high resolution regional climate model with a surrogate climate change scenario. Geophys Res Lett 37(5). doi: 10.1029/2009GL041801,
  65. Isotta FA, Frei C, Weilguni V, Perčec Tadić M, Lassègues P, Rudolf B, Pavan V, Cacciamani C, Antolini G, Ratto SM, Munari M, Micheletti S, Bonati V, Lussana C, Ronchi C, Panettieri E, Marigo G, Vertačnik G (2014) The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int J Climatol 34(5):1657–1675. doi: 10.1002/joc.3794 CrossRefGoogle Scholar
  66. Jacob D, Petersen J, Eggert B, Alias A, Christensen O, Bouwer L, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana JF, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14(2):563–578. doi: 10.1007/s10113-013-0499-2 CrossRefGoogle Scholar
  67. Jonas T, Rixen C, Sturm M, Stoeckli V (2008) How alpine plant growth is linked to snow cover and climate variability. J Geophys Res Biogeosci 113(G3):G03013. doi: 10.1029/2007JG000680
  68. Keller F, Goyette S, Beniston M (2005) Sensitivity analysis of snow cover to climate change scenarios and their impact on plant habitats in alpine terrain. Clim Change 72(3):299–319CrossRefGoogle Scholar
  69. Klehmet K, Geyer B, Rockel B (2013) A regional climate model hindcast for Siberia: analysis of snow water equivalent. Cryosphere 7(4):1017–1034CrossRefGoogle Scholar
  70. Klein AG, Stroeve J (2002) Development and validation of a snow albedo algorithm for the MODIS instrument. Ann Glaciol 34(1):45–52CrossRefGoogle Scholar
  71. Klein AG, Hall DK, Riggs GA (1998) Improving snow cover mapping in forests through the use of a canopy reflectance model. Hydrol Process 12(10–11):1723–1744. doi: 10.1002/(SICI)1099-1085(199808/09)12:10/11<1723::AID-HYP691>3.0.CO;2-2 CrossRefGoogle Scholar
  72. Koenig U, Abegg B (1997) Impacts of climate change on winter tourism in the Swiss Alps. J Sustain Tour 5(1):46–58CrossRefGoogle Scholar
  73. Kotlarski S, Bosshard T, Lüthi D, Pall P, Schär C (2012) Elevation gradients of European climate change in the Regional Climate Model COSMO-CLM. Clim Change 112(2):189–215. doi: 10.1007/s10584-011-0195-5 CrossRefGoogle Scholar
  74. Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schär C, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V (2014) Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev Discuss 7(4):1297–13333. doi: 10.5194/gmd-7-1297-2014 CrossRefGoogle Scholar
  75. Krause P, Boyle DP, Bäse F (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci 5:89–97. doi: 10.5194/adgeo-5-89-2005 CrossRefGoogle Scholar
  76. Kunstmann H, Stadler C (2005) High resolution distributed atmospheric-hydrological modelling for Alpine catchments. J Hydrol 314(1–4):105–124. doi: 10.1016/j.jhydrol.2005.03.033 CrossRefGoogle Scholar
  77. Laternser M, Schneebeli M (2003) Long-term snow climate trends of the Swiss Alps (1931–99). Int J Climatol 23(7):733–750. doi: 10.1002/joc.912 CrossRefGoogle Scholar
  78. Lee S, Klein AG, Over TM (2005) A comparison of MODIS and NOHRSC snow-cover products for simulating streamflow using the Snowmelt Runoff Model. Hydrol Process 19(15):2951–2972. doi: 10.1002/hyp.5810 CrossRefGoogle Scholar
  79. López-Moreno JI, Goyette S, Beniston M (2008) Climate change prediction over complex areas: spatial variability of uncertainties and predictions over the Pyrenees from a set of regional climate models. Int J Climatol 28(11):1535–1550. doi: 10.1002/joc.1645 CrossRefGoogle Scholar
  80. Magnusson J, Jonas T, Lopez-Moreno I, Lehning M (2010) Snow cover response to climate change in a high alpine and haif-glacierized basin in Switzerland. Hydrol Res 41(3–4):230–240. doi: 10.2166/nh.2010.115 CrossRefGoogle Scholar
  81. Martin E, Etchevers P (2005) Impact of climatic changes on snow cover and snow hydrology in the French Alps. In: Huber UM, Bugmann HKM, Reasoner MA (eds) Global change and mountain regions: An overview of current knowledge, Part II. Advances in global change research, vol 23. Springer, Netherlands, pp 235–242. doi: 10.1007/140203508X24
  82. Meehl GA, Covey C, Taylor KE, Delworth T, Stouffer RJ, Latif M, McAvaney B, Mitchell JF (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88(9):1383–1394CrossRefGoogle Scholar
  83. Middelkoop H, Daamen K, Gellens D, Grabs W, Kwadijk JC, Lang H, Parmet BW, Schädler B, Schulla J, Wilke K (2001) Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Clim Change 49(1–2):105–128CrossRefGoogle Scholar
  84. Montesarchio M, Zollo AL, Bucchignani E, Mercogliano P, Castellari S (2014) Performance evaluation of high-resolution regional climate simulations in the Alpine space and analysis of extreme events. J Geophys Res Atmos 119(6):3222–3237. doi: 10.1002/2013JD021105 CrossRefGoogle Scholar
  85. Nash J, Sutcliffe J (1970) River flow forecasting through conceptual models part I—A discussion of principles. J Hydrol 10(3):282–290. doi: 10.1016/0022-1694(70)90255-6,
  86. Parajka J, Blöschl G (2006) Validation of MODIS snow cover images over Austria. Hydrol Earth Syst Sci 10(5):679–689. doi: 10.5194/hess-10-679-2006 CrossRefGoogle Scholar
  87. Parajka J, Blöschl G (2008a) Spatio-temporal combination of MODIS images – potential for snow cover mapping. Water Resour Res 44(3). doi: 10.1029/2007WR006204
  88. Parajka J, Blöschl G (2008b) The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. J Hydrol 358(3–4):240–258. doi: 10.1016/j.jhydrol.2008.06.006 CrossRefGoogle Scholar
  89. Parajka J, Pepe M, Rampini A, Rossi S, Blöschl G (2010) A regional snow-line method for estimating snow cover from MODIS during cloud cover. J Hydrol 381(3–4):203–212. doi: 10.1016/j.jhydrol.2009.11.042 CrossRefGoogle Scholar
  90. Paudel KP, Andersen P (2011) Monitoring snow cover variability in an agropastoral area in the Trans Himalayan region of Nepal using MODIS data with improved cloud removal methodology. Remote Sens Environ 115(5):1234–1246CrossRefGoogle Scholar
  91. Pauli H, Gottfried M, Grabherr G (1996) Effects of climate change on mountain ecosystems—upward shifting of alpine plants. World Resour Rev 8(3):382–390Google Scholar
  92. Payne JT, Wood AW, Hamlet AF, Palmer RN, Lettenmaier DP (2004) Mitigating the effects of climate change on the water resources of the Columbia river basin. Clim Change 62(1–3):233–256CrossRefGoogle Scholar
  93. Pepe M, Brivio P, Rampini A, Nodari FR, Boschetti M (2005) Snow cover monitoring in Alpine regions using ENVISAT optical data. Int J Remote Sens 26(21):4661–4667CrossRefGoogle Scholar
  94. Räisänen J (2008) Warmer climate: less or more snow? Clim Dyn 30(2–3):307–319. doi: 10.1007/s00382-007-0289-y CrossRefGoogle Scholar
  95. Räisänen J, Eklund J (2012) 21st century changes in snow climate in northern Europe: a high-resolution view from ENSEMBLES regional climate models. Clim Dyn 38(11–12):2575–2591. doi: 10.1007/s00382-011-1076-3 CrossRefGoogle Scholar
  96. Ramsay BH (1998) The interactive multisensor snow and ice mapping system. Hydrol Process 12(10):1537–1546CrossRefGoogle Scholar
  97. Rango A, Chang A, Foster J (1979) The utilization of spaceborne microwave radiometers for monitoring snowpack properties. Nord Hydrol 10(1):25–40Google Scholar
  98. Rango A, Gomez-Landesa E, Bleiweiss M, Havstad K, Tanksley K (2003) Improved satellite snow mapping, snowmelt runoff forecasting, and climate change simulations in the upper Rio Grande basin. World Resour Rev 15:25–41Google Scholar
  99. Riggs G, Hall DK, Salomonson VV (2006) MODIS snow products user guide to collection 5.
  100. Rittger K, Painter TH, Dozier J (2013) Assessment of methods for mapping snow cover from MODIS. Adv Water Resour 51:367–380CrossRefGoogle Scholar
  101. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17(4):347–348CrossRefGoogle Scholar
  102. Rodell M, Houser P (2004) Updating a land surface model with MODIS-derived snow cover. J Hydrometeorol 5(6):1064–1075CrossRefGoogle Scholar
  103. Salomonson V, Appel I (2004) Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens Environ 89(3):351–360CrossRefGoogle Scholar
  104. Salomonson VV, Appel I (2006) Development of the Aqua MODIS NDSI fractional snow cover algorithm and validation results. Geosci Remote Sens IEEE Trans 44(7):1747–1756CrossRefGoogle Scholar
  105. Schaefli B, Hingray B, Musy A et al (2007) Climate change and hydropower production in the Swiss Alps: quantification of potential impacts and related modelling uncertainties. Hydrol Earth Syst Sci Dis 11(3):1191–1205CrossRefGoogle Scholar
  106. Schaper J, Martinec J, Seidel K (1999) Distributed mapping of snow and glaciers for improved runoff modelling. Hydrol Process 13(12–13):2023–2031. doi: 10.1002/(SICI)1099-1085(199909)13:12/13<2023::AID-HYP877>3.0.CO;2-A CrossRefGoogle Scholar
  107. Scherrer SC, Appenzeller C, Laternser M (2004) Trends in Swiss Alpine snow days: the role of local- and large-scale climate variability. Geophys Res Lett 31(13). doi: 10.1029/2004GL020255,
  108. Van der Schrier G, van den Besselaar EJM, Klein Tank AMG, Verver G (2013) Monitoring European average temperature based on the E-OBS gridded data set. J Geophys Res Atmos 118(11):5120–5135. doi: 10.1002/jgrd.50444 CrossRefGoogle Scholar
  109. Scott D, McBoyle G (2007) Climate change adaptation in the ski industry. Mitig Adapt Strat Glob Change 12(8):1411–1431CrossRefGoogle Scholar
  110. Seidel K, Martinec J (2002) Hydrological applications of satellite snow cover mapping in the Swiss Alps. In: Proceedings of EARSeL-LISSIG-Workshop Observing our Cryosphere from Space, vol 80Google Scholar
  111. Seidel K, Martinec J (2004) Remote sensing in snow hydrology: runoff modelling, effect of climate change. Springer-Praxis books in geophysical sciences. Springer, Praxis Pub., Berlin, New York, Chichester, UK, p 150Google Scholar
  112. Steger C, Kotlarski S, Jonas T, Schär C (2013) Alpine snow cover in a changing climate: a regional climate model perspective. Clim Dyn 41(3–4):735–754. doi: 10.1007/s00382-012-1545-3 CrossRefGoogle Scholar
  113. Steiger R, Mayer M (2008) Snowmaking and climate change: future options for snow production in Tyrolean ski resorts. Mt Res Dev 28(3):292–298CrossRefGoogle Scholar
  114. Steppeler J, Doms G, Schättler U, Bitzer HW, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol Atmos Phys 82(1–4):75–96. doi: 10.1007/s00703-001-0592-9 CrossRefGoogle Scholar
  115. Sun C, Walker JP, Houser PR (2004) A methodology for snow data assimilation in a land surface model. J Geophys Res Atmos 109(D8). doi: 10.1029/2003JD003765
  116. Takala M, Luojus K, Pulliainen J, Derksen C, Lemmetyinen J, Kärnä JP, Koskinen J, Bojkov B (2011) Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens Environ 115(12):3517–3529. doi: 10.1016/j.rse.2011.08.014 CrossRefGoogle Scholar
  117. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498CrossRefGoogle Scholar
  118. Tedesco M, Narvekar P (2010) Assessment of the NASA AMSR-E SWE product. Selected topics in applied earth observations and remote sensing. IEEE J 3(1):141–159. doi: 10.1109/JSTARS.2010.2040462 Google Scholar
  119. Tedesco M, Kelly R, Foster J, Chang A (2004) AMSR-E/Aqua daily l3 global snow water equivalent EASE-Grids V002. National Snow and Ice Data Center, BoulderGoogle Scholar
  120. Theurillat JP, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50(1–2):77–109CrossRefGoogle Scholar
  121. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800CrossRefGoogle Scholar
  122. Tong J, Déry SJ, Jackson PL (2009) Topographic control of snow distribution in an alpine watershed of western Canada inferred from spatially-filtered MODIS snow products. Hydrol Earth Syst Sci 13(3):319–326. doi: 10.5194/hess-13-319-2009 CrossRefGoogle Scholar
  123. Uppala SM, KÅllberg PW, Simmons AJ, Andrae U, Bechtold VDC, FiorinoM, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K,Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA,Beljaars ACM, Berg LVD, Bidlot J, Bormann N, Caires S, Chevallier F,Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E,Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, MahfoufJF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012. doi: 10.1256/qj.04.176
  124. Vanham D (2012) The Alps under climate change: implications for water management in Europe. J Water Clim Change 3(3):197–206CrossRefGoogle Scholar
  125. Vavrus S (2007) The role of terrestrial snow cover in the climate system. Clim Dyn 29(1):73–88. doi: 10.1007/s00382-007-0226-0 CrossRefGoogle Scholar
  126. Viviroli D, Dürr HH, Messerli B, Meybeck M, Weingartner R (2007) Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resour Res 43(7). doi: 10.1029/2006WR005653
  127. Voigt T, Füssel HM, Gärtner-Roer I, Huggel C, Marty C, Zemp M (2010) Impacts of climate change on snow, ice, and permafrost in Europe: observed trends, future projections, and socio-economic relevance. ETC/ACC Technical Paper 2010/13, The European Topic Centre on Air and Climate Change, Bilthovan, The Netherlands, p 117Google Scholar
  128. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416(6879):389–395CrossRefGoogle Scholar
  129. Weber RO, Talkner P, Auer I, Böhm R, Gajić-Čapka M, Zaninović K, Brazdil R, Faško P (1997) 20th-century changes of temperature in the mountain regions of central Europe. Clim Change 36(3–4):327–344CrossRefGoogle Scholar
  130. Wielke LM, Haimberger L, Hantel M (2004) Snow cover duration in Switzerland compared to Austria. Meteorol Z 13(1):13–17CrossRefGoogle Scholar
  131. Wilby RL, Wigley TML, Conway D, Jones PD, Hewitson BC, Main J, Wilks DS (1998) Statistical downscaling of general circulation model output: a comparison of methods. Water Resour Res 34(11):2995–3008. doi: 10.1029/98WR02577 CrossRefGoogle Scholar
  132. Wood A, Leung L, Sridhar V, Lettenmaier D (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Change 62(1–3):189–216. doi: 10.1023/B:CLIM.0000013685.99609.9e CrossRefGoogle Scholar
  133. Zaitchik BF, Rodell M (2009) Forward-looking assimilation of MODIS-derived snow-covered area into a land surface model. J Hydrometeorol 10(1):130–148CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Pierfrancesco Da Ronco
    • 1
    • 2
  • Carlo De Michele
    • 1
  • Myriam Montesarchio
    • 2
    • 3
  • Paola Mercogliano
    • 2
    • 3
  1. 1.Department of Civil and Environmental EngineeringPolitecnico di MilanoMilanItaly
  2. 2.Regional Models and geo-Hydrological Impacts Division (REMHI)Centro Euro-Mediterraneo sui Cambiamenti ClimaticiCapuaItaly
  3. 3.Centro Italiano Ricerche Aerospaziali CIRACapuaItaly

Personalised recommendations