Abstract
Hadley circulation (HC) is a planetary scale circulation spanning one-third of the globe from tropics to the sub-tropics. Recent changes in HC width and its temporal variability is a topic of paramount interest because of the climate implications it carry alongside. The present study attempts to bring out the subtropical climate change indications in the comparatively new Japanese Re-analysis (JRA55) dataset by means of the mean meridional stream function (MSF). The observed features of HC in JRA55 are found to be reproduced in NCEP, MERRA and ECMWF datasets, with notable differences in the magnitudes of MSF. The calculated annual cycle of HC edges, center and total width from this dataset closely resembles the annual cycle of the respective parameters derived from the rest of the datasets, with very less inter-annual variability. For the first time, MSF estimated using four reanalysis datasets (JRA55, NCEP, MERRA and ECMWF datasets) are verified with observations from integrated global radiosonde archive datasets, using the process of subsampling. The features so estimated show a high degree of similarity amongst each other as well as with observations. The monthly trend in the total width of the HC is quantified to show a maximum of expansion during the month of July, which is significant at the 95 % confidence interval for all datasets. The present paper also discusses the presence of a ‘minor circulation’ feature in the northern hemisphere which is centered on 34°N during the June and July months, but not in all years. The significance of the present study lies in evaluating the relatively new JRA55 datasets with widely used reanalysis data sets and radiosonde observations and revelation of a minor circulation not discussed hitherto in the context of HC dynamics.









Similar content being viewed by others

Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ao CO, Hajj AJ (2013) Monitoring the width of the tropical belt with GPS radio occultation measurements. Geophys Res Lett 40:6236–6241. doi:10.1002/2013GL058203
Bengtsson L, Arkin P, Berrisford P et al (2007) The need for a dynamical climate reanalysis. Bull Am Meteorol Soc 88:495–501. doi:10.1175/BAMS-88-4-495
Chen J, Carlson B, Del Genio A (2002) Evidence for strengthening of the tropical general circulation in the 1990s. Science 295:838–841. doi:10.1126/science.1065835
Chen S, Wei K, Chen W, Song L (2014) Regional changes in the annual mean Hadley circulation in recent decades. J Geophys Res Atmos 119:7815–7832. doi:10.1002/2014JD021540
Clement AC (2006) The role of the ocean in the seasonal cycle of the Hadley circulation. J Atmos Sci 63:3351–3365. doi:10.1175/JAS3811.1
Cook KH (2003) Role of continents in driving the Hadley cells. J Atmos Sci 60:957–976. doi:10.1175/1520-0469(2003)060<0957:ROCIDT>2.0.CO;2
Davis NA, Birner T (2013) Seasonal to multidecadal variability of the width of the tropical belt. J Geophys Res Atmos 118:7773–7787. doi:10.1002/jgrd.50610
Davis SM, Rosenlof KH (2012) A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations. J Clim 25:1061–1078. doi:10.1175/JCLI-D-11-00127.1
Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828
Diaz HF, Bradley RS (2004) The Hadley circulation: present, past and future. Kluwer, The Netherlands
Durre I, Vose RS, Wuertz DB (2006) Overview of the integrated global radiosonde archive. J Clim 19:53–68
Fu Q, Lin P (2011) Poleward shift of subtropical jets inferred from satellite-observed lower-stratospheric temperatures. J Atmos Sci. doi:10.1175/JCLI-D-11-00027.1
Fu Q, Johanson CM, Wallace JM, Reichler T (2006) Enhanced mid-latitude tropospheric warming in satellite measurements. Science 312:1179. doi:10.1126/science.1125566
Goody RM, Walker JCG (1972) The atmospheres. Prentice-Hall, Englewood Cliffs
Held IM, Hou AY (1980) Nonlinear axially symmetric circulation in a nearly inviscid atmoshere. J Atmos Sci 37:515–533
Hu Y, Fu Q (2007) Observed poleward expansion of the Hadley circulation since 1979. Atmos Chem Phys Discuss 7:9367–9384. doi:10.5194/acpd-7-9367-2007
Hu Y, Tao L, Liu J (2013) Poleward expansion of the Hadley circulation in CMIP5 simulations. Adv Atmos Sci 30:790–795. doi:10.1007/s00376-012-2187-4
Hudson R, Andrade M, Follette M, Frolov A (2006) The total ozone field separated into meteorological regimes—part II: northern hemisphere mid-latitude total ozone trends. Atmos Chem Phys 6:5183–5191. doi:10.5194/acp-6-5183-2006
Issac J, Turton S (2014) Expansion of the tropics—evidence and implications In: State of the tropics 2014 report. James Cook University, Cairnes, Australia
Johanson CM, Fu Q (2009) Hadley cell widening: model simulations versus observations. J Clim 22:2713–2725. doi:10.1175/2008JCLI2620.1
Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
Kanamitsu M, Ebisuzaki W, Woollen J et al (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643. doi:10.1175/BAMS-83-11-1631
Karnauskas KB, Ummenhofer CC (2014) On the dynamics of the Hadley circulation and subtropical drying. Clim Dyn 42:2259–2269. doi:10.1007/s00382-014-2129-1
Kobayashi S, Ota Y, Harada Y et al (2014) The JRA-55 Reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn. doi:10.2151/jmsj.2015-001
Liu J, Song M, Hu Y, Ren X (2012) Changes in the strength and width of the Hadley circulation since 1871. Clim Past 8:1169–1175. doi:10.5194/cp-8-1169-2012
Lu J, Vecchi GA, Reichler T (2007) Expansion of the Headley cell under global warming. Geophys Res Lett 34:L06805. doi:10.1029/2006GL028443
Lucas C, Nguyen H, Timbal B (2012) An observational analysis of Southern Hemisphere tropical expansion. J Geophys Res 117:1–18. doi:10.1029/2011JD017033
Lucas C, Timbal B, Nguyen H (2014) The expanding tropics: a critical assessment of the observational and modeling studies. WIRE Clim Change 5:89–112
Molnar P, England P, Martinod J (1993) Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon. Rev Geophys 31:357–396. doi:10.1029/93RG02030
Nguyen H, Evans A, Lucas C et al (2013) The Hadley circulation in reanalyses: climatology, variability, and change. J Clim 26:3357–3376. doi:10.1175/JCLI-D-12-00224.1
Oort AH, Yienger JJ (1996) Observed interannual variability in the Hadley circulation and its connection to ENSO. J Clim 9:2751–2767. doi:10.1175/1520-0442(1996)009<2751:OIVITH>2.0.CO;2
Quan X-W, Hoerling MP, Perlwitz J et al (2014) How fast are the tropics expanding? J Clim 27:1999–2013. doi:10.1175/JCLI-D-13-00287.1
Reichler T (2009) Changes in the atmospheric circulation as indicator of climate change. In: Letcher TM (ed) Climate change: observed impacts on planet Earth. Elsevier BV, The Netherlands, pp 145–164
Rienecker MM, Suarez MJ, Gelaro R et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi:10.1175/JCLI-D-11-00015.1
Santer BD, Wigley TML, Boyle JS et al (2000) Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J Geophys Res 105:7337. doi:10.1029/1999JD901105
Seidel DJ, Randel WJ (2007) Recent widening of the tropical belt: evidence from tropopause observations. J Geophys Res Atmos 112:1–6. doi:10.1029/2007JD008861
Seidel D, Fu Q, Randel W, Reichler T (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24. doi:10.1038/ngeo.2007.38
Stachnik JP, Schumacher C (2011) A comparison of the Hadley circulation in modern reanalyses. J Geophys Res 116:1–14. doi:10.1029/2011JD016677
Sturaro G (2003) Patterns of variability in the satellite microwave sounding unit temperature record: comparison with surface and reanalysis data. Int J Climatol 23:1799–1820. doi:10.1002/joc.975
Waliser DE, Shi Z, Lanzante JR, Oort AH (1999) The Hadley circulation: assessing NCEP/NCAR reanalysis and sparse in situ estimates. Clim Dyn 15:719–735. doi:10.1007/s003820050312
Acknowledgments
Sneha Susan Mathew gratefully acknowledges the financial support and research opportunity provided by Indian Space Research Organization (ISRO) for her work. The authors are thankful to the NCAR for NCEP dataset, Global Modelling and Assimilation Office at NASA Goddard Space Flight Centre for MERRA dataset, ECMWF for ERA dataset, Japan Meteorological Agency (JMA) for JRA-55 dataset and NOAA’s National Climatic Data Centre for IGRA dataset.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mathew, S.S., Kumar, K.K. & Subrahmanyam, K.V. Hadley cell dynamics in Japanese Reanalysis-55 dataset: evaluation using other reanalysis datasets and global radiosonde network observations. Clim Dyn 47, 3917–3930 (2016). https://doi.org/10.1007/s00382-016-3051-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00382-016-3051-5

