Abstract
In this paper we characterize the seasonal and inter-annual variabilities of cloud fraction profiles in both observations and simulation since they are critical to better assess the impact of clouds on climate variability. The spaceborne lidar onboard CALIPSO, providing cloud vertical profiles since 2006, is used together with a 23-year WRF simulation at 20 km resolution. A lidar simulator helps to compare consistently model with observations. The bias in observations due to the satellite under-sampling is first estimated. Then we examine the vertical variability of both occurrence and properties of clouds. It results that observations indicate a similar occurrence of low and high clouds over continent, and more high than low clouds over the sea except in summer. The simulation shows an overestimate (underestimate) of high (low) clouds comparing to observations, especially in summer. However the seasonal variability of cloud vertical profiles is well captured by WRF. Concerning inter-annual variability, observations show that in winter, those of high clouds is twice the low clouds one, an order of magnitude that is is well simulated. In summer, the observed inter-annual variability is vertically more homogeneous while the model still simulates more variability for high clouds than for low clouds. The good behavior of the simulation in winter allows us to use the 23 years of simulation and 8 years of observations to estimate the time period required to characterize the natural variability of the cloud fraction profile in winter, i.e. the time period required to detect significant anomalies and trends.









Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Appenzeller C, Holton JR, Rosenlof KH (1996) Seasonal variation of mass transport across the tropopause. J Geophys Res Atmos 101(D10):15071–15078. doi:10.1029/96JD00821
Bastin S, Chiriaco M, Drobinski P (2016) Control of radiation and evaporation on temperature variability in a WRF regional climate simulation: comparison with colocated long-term ground based observations near Paris. Clim Dyn. doi: 10.1007/s00382-016-2974-1
Boé J, Terray L (2014) Land–sea contrast, soil-atmosphere and cloud-temperature interactions: interplays and roles in future summer European climate change. Clim Dyn 42:683–699. doi:10.1007/s00382-013-1868-8
Cassou C, Terray L, Hurrell JW, Deser C (2004) North Atlantic winter climate regimes: Spatial asymmetry, stationarity with time, and oceanic forcing. J Clim 17:1055–1068. doi:10.1175/1520-0442(2004).017<1055:NAWCRS>2.0.CO;2
Cassou C, Terray Laurent, Phillips Adam S (2005) Tropical Atlantic influence on European heat waves. J Clim 18:2805–2811. doi:10.1175/JCLI3506.1
Cattiaux J, Vautard R, Cassou C, Yiou P, Masson-Delmotte V, Codron F (2010) Winter 2010 in Europe: a cold extreme in a warming climate. Geophys Res Lett 37:20. doi:10.1029/2010GL044613
Cesana G, Chepfer H (2012) How well do climate models simulate cloud vertical structure? A comparison between CALIPSO-GOCCP satellite observations and CMIP5 models. Geophys Res Lett 39:L15704. doi:10.1029/2012GL053153
Chaboureau JP, Claud C (2006) Satellite-based climatology of Mediterranean cloud systems and their association with large-scale circulation. J Geophys Res 111:D01102. doi:10.1029/2005JD006460
Chaboureau JP, Cammas JP, Mascart PJ, Lafore JP, Pinty JP (2002) Mesoscale model cloud scheme assessment using satellite observations. J Geophys Res 107(D16):4301. doi:10.1029/2001jd000714
Chaboureau J-P, Richard E, Pinty J-P, Flamant C, Di Girolamo P, Kiemle C, Behrendt A, Chepfer H, Chiriaco M, Wulfmeyer V (2012) Long-range transport of Saharan dust and its radiative impact on precipitation forecast: a case study during the Convective and Orographically induced Precipitation Study (COPS). R Meteorol Soc 137:236–251. doi:10.1002/qj.719
Chepfer H, Chiriaco M, Vautard R, Spinhirne J (2007) Evaluation of MM5 optically thin clouds over Europe in fall using ICESat lidar spaceborne observations. Mon Weather Rev 135:2737–2753. doi:10.1175/MWR3413.1
Chepfer H, Bony S, Winker DM, Chiriaco M, Dufresne J-L, Seze G (2008) Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model. Geophys Res Lett 35:L20804. doi:10.1029/2012GL053385
Chepfer H, Bony S, Winker D, Cesana G, Dufresne JL, Minnis P, Stubenrauch CJ, Zeng S (2010) The GCM-Oriented CALIPSO cloud product (CALIPSO-GOCCP). J Geophys Res Atmos 115:D00H16. doi:10.1029/2009JD012251
Chepfer H, Cesana G, Winker D, Getzewich B, Vaughan M, Liu Z (2013) Comparison of Two different cloud climatologies derived from CALIOP-attenuated backscattered measurements (Level 1): the CALIPSO-ST and the CALIPSO-GOCCP. J Atmos Ocean Technol 30:725–744. doi:10.1175/JTECH-D-12-00057.1
Chepfer H, Noel V, Winker D, Chiriaco M (2014) Where and when will we observe cloud changes due to climate warming? Geophys Res Lett 41:8387–8395. doi:10.1002/2014GL061792
Cheruy F, Aires Filipe (2009) Cluster analysis of cloud properties over the southern European Mediterranean area in observations and a model. Mon Weather Rev 137:3161–3176. doi:10.1175/2009MWR2882.1
Cheruy F, Campoy A, Dupont J-C, Ducharne A, Hourdin F, Haeffelin M, Chiriaco M, Idelkadi A (2013) Combined influence of atmospheric physics and soil hydrology on the simulated meteorology at the SIRTA atmospheric observatory. Clim Dyn 40:2251–2269. doi:10.1007/s00382-012-1469-y
Chiriaco M, Vautard R, Chepfer H, Haeffelin M, Dudhia J, Wanherdrick Y, Morille Y, Protat A (2006) The ability of MM5 to simulate ice clouds: systematic comparison between simulated and measured fluxes and lidar/radar profiles at the SIRTA atmospheric observatory. Mon Weather Rev 134:897–918
Chiriaco M, Bastin S, Yiou P, Haeffelin M, Jean-Charles D, Stefanon M (2014) European heatwave in July 2006: observations and modeling showing how local processes amplify conducive large-scale conditions. Geophys Res Lett 41(15):5644–5652. doi:10.1002/2014GL060205
Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, Van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597
Drobinski P, Ducrocq V, Alpert P, Anagnostou E, Béranger K, Borga M, Braud I, Chanzy A, Davolio S, Delrieu G, Estournel C, Filali Boubrahmi N, Font J, Grubišić V, Gualdi S, Homar V, Ivančan-Picek B, Kottmeier C, Kotroni V, Lagouvardos K, Lionello P, Llasat MC, Ludwig W, Lutoff C, Mariotti A, Richard E, Romero R, Rotunno R, Roussot O, Ruin I, Somot S, Taupier-Letage I, Tintore J, Uijlenhoet R, Wernli H (2014) HyMeX: a 10-Year multidisciplinary program on the Mediterranean water cycle. Bull Am Meteorol Soc 95:1063–1082. doi:10.1175/BAMS-D-12-00242.1
Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107. doi:10.1175/1520-0469(1989).046<3077:NSOCOD>2.0.CO;2
Flaounas E, Drobinski P, Vrac M, Bastin S, Lebeaupin-Brossier C, Stéfanon M, Borga M, Calvet JC (2013) Precipitation and temperature space-time variability and extremes in the Mediterranean region: evaluation of dynamical and statistical downscaling methods. Clim Dyn 40:2687–2705. doi:10.1007/s00382-012-1558-y
Flaounas E, Raveh-Rubin SA, Wernli H, Drobinski P, Bastin S (2014) The dynamical structure of intense Mediterranean cyclones. Clim Dyn 44:2411–2427. doi:10.1007/s00382-014-2330-2
Funatsu BM, Claud C, Chaboureau JP (2009) Comparison between the large-scale environment of moderate and intense precipitating systems in the Mediterranean region. Mon Weather Rev 137:3933–3959
Gettelman A, De Forster PMF (2002) A climatology of the tropical tropopause layer. J Meteorol Soc Jpn 80(4B):911–924. doi:10.2151/jmsj.80.911
Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull. 58(3):175–183
Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1107. doi:10.1175/2009BAMS2607.1
Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103–120
Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181. doi:10.1175/1520-0450(2004).043<0170:TKCPAU>2.0.CO;2
Khvorostyanov VI (1995) Mesoscale processes of cloud formation, cloud-radiation interaction, and their modelling with explicit cloud microphysics. Atmos Res 39(1–3):1–67. doi:10.1016/0169-8095(95)00012-G
Kjellström E, Nikulin G, Hansson U, Strandberg G, Ullerstig A (2011) 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations. Tellus A 63:24–40. doi:10.1111/j.1600-0870.2010.00475.x
Lebeaupin-Brossier C, Bastin S, Béranger K, Drobinski P (2015) Regional mesoscale air–sea coupling impacts and extreme meteorological events role on the Mediterranean Sea water budget. Clim Dyn 44:1029–1051. doi:10.1007/s00382-014-2252-z
Lenderink G, van Ulden A, van den Hurk B, van Meijgaard E (2007) Summertime inter-annual temperature variability in an ensemble of regional model simulations: analysis of the surface energy budget. Clim Change 81(1):233–274. doi:10.1007/s10584-006-9229-9
Mariotti A, Pan Yutong, Zeng Ning, Alessandri Andrea (2015) Long-term climate change in the Mediterranean region in the midst of decadal variability. Clim Dyn 44(5–6):1437–1456. doi:10.1007/s00382-015-2487-3
Mlawer JE, Taubma JS, Brown DP, Iancono MJ, Clough AS (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16663–16682. doi:10.1029/97JD00237
Monin AS, Obukhov A (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci USSR 151:163–187
Nam C, Bony S, Dufresne J-L, Chepfer H (2012) The ‘too few, too bright’ tropical low-cloud problem in CMIP5 models. Geophys Res Lett 39:L21801. doi:10.1029/2012GL053421
Noh Y, Cheon WG, Hong SY (2003) Improvement of the k-profile model for the planetary boundary layer based on large eddy simulation data. Bound Layer Meteorol 107:401–427
Omrani H, Drobinski P, Dubos T (2013) Optimal nudging strategies in regional climate modelling: investigation in a big-brother experiment over the European and Mediterranean regions. Clim Dyn 41:2451–2470. doi:10.1007/s00382-012-1615-6
Omrani H, Drobinski P, Jourdier B, Brossier CL (2014) Investigation on the offshore wind energy potential over the north western Mediterranean Sea in a regional climate system model. In: IEEE, Renewable Energy Congress (IREC), 2014 5th International. doi:10.1109/IREC.2014.6826956
Reiter ER (1975) Handbook for forecasters in the Mediterranean: weather Phenomena of the Mediterranean Basin, Part 1. General Description of the Meteorological Processes. Environmental Prediction Research Facility Naval Postgraduate School, Monterey, CA, p. 344. Technique Paper 5–75
Rojas M, Li LZ, Kanakidou M, Hatzianastassiou N, Seze G, Le Treut H (2013) Winter weather regimes over the Mediterranean region: their role for the regional climate and projected changes in the twenty-first century. Clim Dyn. doi:10.1007/s00382-013-1823-8
Ruti P, Somot S, Dubois C, Calmanti S, Ahrens B, Alias A, Aznar R, Bartholy J, Bastin S, Branger K, Brauch J, Calvet J-C, Carillo A, Decharme B, Dell’Aquila A, Djurdjevic V, Drobinski P, Elizalde-Arellano A, Gaertner M, Galn P, Gallardo C, Giorgi F, Gualdi S, Harzallah A, Herrmann M, Jacob D, Khodayar S, Krichak S, Lebeaupin C, L’Heveder B, Li L, Liguro G, Lionello P, Onol B, Rajkovic B, Sannino G, Sevault F (2015) MED-CORDEX initiative for Mediterranean climate studies. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-14-00176.1
Rysman J-F, Verrier S, Lemaître Y, Moreau E (2013) Space-time variability of the rainfall over the western Mediterranean region: a statistical analysis. J Geophys Res Atmos 118:8448–8459. doi:10.1002/jgrd.50656
Salameh T, Drobinski P, Dubos T (2010) The effect of indiscriminate nudging time on large and small scales in regional climate modelling: application to the Mediterranean basin. Q J R Meteorol Soc 136(646):170–182. doi:10.1002/qj.518
Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227:3465–3485. doi:10.1016/j.jcp.2007.01.037
Smirnova TG, Brown JM, Stanley SG (1997) Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon Weather Rev 125:1870–1884. doi:10.1175/1520-0493(1997).125<1870:PODSMC>2.0.CO;2
Smirnova TG, Brown JM, Benjamin SG, Kim D (2000) Parameterization of cold-season processes in the MAPS land-surface scheme. J Geophys Res 105(D3):4077–4086. doi:10.1029/1999JD901047
Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean-atmosphere models. J Clim 19:3354–3360. doi:10.1175/JCLI3799.1
Stauffer DR, Seaman NL (1990) Use of four-dimensional data assimilation in a limited-area mesoscale model. Part i: experiments with synoptic-scale data. Mon Weather Rev 118(6):1250–1277. doi:10.1175/1520-0493(1990).118
Stefanon M, Drobinski P, D’Andrea F, Lebeaupin-Brossier C, Bastin S (2014) Soil moisture-temperature feedbacks at meso-scale during summer heat waves over Western Europe. Clim Dyn 42:1309–1324. doi:10.1007/s00382-013-1794-9
Stephens GL (2005) Cloud feedbacks in the climate system: a critical review. J Clim 18:237–273. doi:10.1175/JCLI-3243.1
Tang Q, Leng G, Groisman PY (2012) European hot summers associated with a reduction of cloudiness. J Clim 25:3637–3644. doi:10.1175/JCLI-D-12-00040.1
Trigo RM, Osborn TJ, Corte-Real JM (2002) The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms. Clim Res 20:9–17. doi:10.3354/cr020009
Tsushima Y, Ringer MA, Webb MJ, Williams KD (2013) Quantitative evaluation of the seasonal variations in climate model cloud regimes. Clim Dyn 41(9):2679–2696. doi:10.1007/s00382-012-1609-4
Vaittinada Ayar P, Vrac M, Bastin S, Carreau J, Gallardo C (2015) Intercomparison of statistical and dynamical downscaling models under the EURO- and MED-CORDEX initiative framework: present climate evaluations. Clim Dyn. doi:10.1007/s00382-015-2647-5
Vautard R (1990) Multiple weather regimes over the North Atlantic: analysis of precursors and successors. Mon Weather Rev 118:2056–2081. doi:10.1175/1520-0493(1990).118<2056:MWROTN>2.0.CO;2
Winker DM, Pelon JR, McCormick MP (2003) The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds. In: Proceedings of SPIE 4893, Lidar remote sensing for industry and environment monitoring III, 1 (March 24, 2003). doi:10.1117/12.466539
Winker DM, Vaughan MA, Omar A, Hu Y, Powell KA (2009) Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J Atmos Ocean Technol 26:2310–2323. doi:10.1175/2009JTECHA1281.1
Xoplaki E, Gonzalez-Rouco JF, Luterbacher J, Wanner H (2004) Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Clim Dyn 23:63–78. doi:10.1007/s00382-004-0422-0
Yiou P, Vautard R, Naveau P, Cassou C (2007) Inconsistency between atmospheric dynamics and temperatures during the exceptional 2006/2007 fall/winter and recent warming in Europe. Geophys Res Lett 34:L21808. doi:10.1029/2007GL031981
Acknowledgments
This work is a contribution to the EECLAT project through Les Enveloppes Fluides et l’Environnement / Institut National des Sciences de l’Univers and Terre, Océan, Surfaces Continentales, Atmosphère/Centre National d’Etudes Spatiales supports and to the HyMeX program through INSU-MISTRALS support, and the Med-CORDEX program. Simulation was performed using Grand Equipement National de Calcul Intensif with granted access to the HPC resources of Institut du Développement et des Ressources en Informatique Scientifique (under allocation i2011010227). The authors would like to thank Climserv team for computing and storage resources. Marjolaine Chiriaco research is directly supported by Centre National d’Etudes Spatiales. The authors wish to thank Florian Rouvière, Gregory Césana, and Vincent Noël for their contribution to this work.
Author information
Authors and Affiliations
Corresponding author
Additional information
This paper is a contribution to the special issue on Med-CORDEX,an international coordinated initiative dedicated to the multi-component regional climate modelling (atmosphere, ocean, land surface, river) of the Mediterranean under the umbrella of HyMeX, CORDEX, and Med-CLIVAR and coordinated by Samuel Somot, Paolo Ruti, Erika Coppola, Gianmaria Sannino, Bodo Ahrens, and Gabriel Jordà.
Appendices
Appendix 1: Lidar equation
The scattering ratio SR is given by (1):
where \(ATB_{tot}\) and \(ATB_{mol}\) are respectively the attenuated backscattered signals for particles and molecules and for molecules only and are given by (2) and (3):
ATBmol and ATBtot products are averaged vertically to obtain SR over 40 layers (Chepfer et al. 2008, 2010).
βsca,part, βsca,mol are lidar backscatter coefficients (m−1 sr−1) and αsca,part and αsca,mol attenuation coefficients (m−1) for particles (clouds, aerosols) and molecules. η is a multiple scattering coefficient that depends both on lidar characteristics and size, shape and density of particles. It is about 0.7 for CALIPSO (Winker et al. 2003; Chepfer et al. 2008).
Figure 10 illustrates two instantaneous SR profiles to help understand what a lidar signal looks like and how cloud detection is computed in this study. Above 10 km, SR(z) is around 1, indicating clear sky for both profiles. High clouds are detected in both profiles between 8 and 10 km: SR(z) of the blue profile reaches the value of 8 and while SR(z) of the red one goes up to 22. The magnitude of SR(z) depends on the cloud optical thickness from the Top Of Atmosphere (TOA) to the level z and the cloud microphysical properties such as the size of the particle or its shape. While the signal is fully attenuated for the red profile below 8 km (SR(z) is almost zero), the blue profile still detects low clouds around 2 km.
Appendix 2: Simulated cloud fraction maps
Figure 11 shows that: for high clouds, a north–south gradient exists in winter with about 10 % of clouds over North Africa and more than 50 % above continental Europe, while in summer, this gradient is north–west/south–east, with almost no high clouds over Turkish and eastern part of Mediterranean basin. In winter, most mid and low clouds occur above the north-eastern part of Europe. In summer, very few mid and low clouds are simulated and they are mostly induced by orography.
Appendix 3: Simulated winter 2010 high clouds anomaly
See Fig. 12.
Appendix 4
The CALIPSO undersampling error estimation from observed cloud fraction profiles is defined as:
\(\varepsilon \, \left( z \right) = \left| {CF_{GOCCP} \left( z \right) - CF_{GOCCP}^{T} \left( z \right)} \right|with\,CF_{GOCCP}^{T} \left( z \right)\) a theoretical cloud fraction that we would have with a complete sampling (observations over all the grid-boxes every 00 UTC).
We define α(z) as the relative model bias, so \(\alpha \left( z \right) = \frac{{ CF_{WRF + sim} \left( z \right)}}{{CF_{GOCCP} \left( z \right)}}\)
We used a set of different samplings to test if α(z) can be considered as constant, i.e. independent of the number of profiles in the sampling. To do that, since we need both observations and simulation to test this hypothesis, we reduced the CALIPSO sampling using only 1 profile over 2 (test 7), 1 over 3 (test 6), and so on down to one profile over 20. Table 4 presents the results of these tests and indicates the α values for low, mid and high clouds. This shows that if the number of profiles become greater than 1/15 of the CALIPSO sampling, α(z) can be considered as nearly constant.
We deduce that: \(\alpha \left( z \right) = \frac{{ CF_{WRF + sim}^{T} \left( z \right)}}{{CF_{GOCCP}^{T} \left( z \right)}}\)
and ε (z) can be written as \(\varepsilon = \frac{{\left| {CF_{WRF + sim} \left( z \right) - CF_{WRF + sim}^{T} \left( z \right)} \right| }}{\alpha \left( z \right)} = \frac{\beta \left( z \right)}{ \alpha \left( z \right)}\) with β(z) defined as the error of undersampling estimated by the simulation.
Rights and permissions
About this article
Cite this article
Chakroun, M., Bastin, S., Chiriaco, M. et al. Characterization of vertical cloud variability over Europe using spatial lidar observations and regional simulation. Clim Dyn 51, 813–835 (2018). https://doi.org/10.1007/s00382-016-3037-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00382-016-3037-3





