Skip to main content

Advertisement

Log in

Characterization of vertical cloud variability over Europe using spatial lidar observations and regional simulation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In this paper we characterize the seasonal and inter-annual variabilities of cloud fraction profiles in both observations and simulation since they are critical to better assess the impact of clouds on climate variability. The spaceborne lidar onboard CALIPSO, providing cloud vertical profiles since 2006, is used together with a 23-year WRF simulation at 20 km resolution. A lidar simulator helps to compare consistently model with observations. The bias in observations due to the satellite under-sampling is first estimated. Then we examine the vertical variability of both occurrence and properties of clouds. It results that observations indicate a similar occurrence of low and high clouds over continent, and more high than low clouds over the sea except in summer. The simulation shows an overestimate (underestimate) of high (low) clouds comparing to observations, especially in summer. However the seasonal variability of cloud vertical profiles is well captured by WRF. Concerning inter-annual variability, observations show that in winter, those of high clouds is twice the low clouds one, an order of magnitude that is is well simulated. In summer, the observed inter-annual variability is vertically more homogeneous while the model still simulates more variability for high clouds than for low clouds. The good behavior of the simulation in winter allows us to use the 23 years of simulation and 8 years of observations to estimate the time period required to characterize the natural variability of the cloud fraction profile in winter, i.e. the time period required to detect significant anomalies and trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Appenzeller C, Holton JR, Rosenlof KH (1996) Seasonal variation of mass transport across the tropopause. J Geophys Res Atmos 101(D10):15071–15078. doi:10.1029/96JD00821

    Article  Google Scholar 

  • Bastin S, Chiriaco M, Drobinski P (2016) Control of radiation and evaporation on temperature variability in a WRF regional climate simulation: comparison with colocated long-term ground based observations near Paris. Clim Dyn. doi: 10.1007/s00382-016-2974-1

    Google Scholar 

  • Boé J, Terray L (2014) Land–sea contrast, soil-atmosphere and cloud-temperature interactions: interplays and roles in future summer European climate change. Clim Dyn 42:683–699. doi:10.1007/s00382-013-1868-8

    Article  Google Scholar 

  • Cassou C, Terray L, Hurrell JW, Deser C (2004) North Atlantic winter climate regimes: Spatial asymmetry, stationarity with time, and oceanic forcing. J Clim 17:1055–1068. doi:10.1175/1520-0442(2004).017<1055:NAWCRS>2.0.CO;2

    Article  Google Scholar 

  • Cassou C, Terray Laurent, Phillips Adam S (2005) Tropical Atlantic influence on European heat waves. J Clim 18:2805–2811. doi:10.1175/JCLI3506.1

    Article  Google Scholar 

  • Cattiaux J, Vautard R, Cassou C, Yiou P, Masson-Delmotte V, Codron F (2010) Winter 2010 in Europe: a cold extreme in a warming climate. Geophys Res Lett 37:20. doi:10.1029/2010GL044613

    Article  Google Scholar 

  • Cesana G, Chepfer H (2012) How well do climate models simulate cloud vertical structure? A comparison between CALIPSO-GOCCP satellite observations and CMIP5 models. Geophys Res Lett 39:L15704. doi:10.1029/2012GL053153

    Google Scholar 

  • Chaboureau JP, Claud C (2006) Satellite-based climatology of Mediterranean cloud systems and their association with large-scale circulation. J Geophys Res 111:D01102. doi:10.1029/2005JD006460

    Article  Google Scholar 

  • Chaboureau JP, Cammas JP, Mascart PJ, Lafore JP, Pinty JP (2002) Mesoscale model cloud scheme assessment using satellite observations. J Geophys Res 107(D16):4301. doi:10.1029/2001jd000714

    Article  Google Scholar 

  • Chaboureau J-P, Richard E, Pinty J-P, Flamant C, Di Girolamo P, Kiemle C, Behrendt A, Chepfer H, Chiriaco M, Wulfmeyer V (2012) Long-range transport of Saharan dust and its radiative impact on precipitation forecast: a case study during the Convective and Orographically induced Precipitation Study (COPS). R Meteorol Soc 137:236–251. doi:10.1002/qj.719

    Article  Google Scholar 

  • Chepfer H, Chiriaco M, Vautard R, Spinhirne J (2007) Evaluation of MM5 optically thin clouds over Europe in fall using ICESat lidar spaceborne observations. Mon Weather Rev 135:2737–2753. doi:10.1175/MWR3413.1

    Article  Google Scholar 

  • Chepfer H, Bony S, Winker DM, Chiriaco M, Dufresne J-L, Seze G (2008) Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model. Geophys Res Lett 35:L20804. doi:10.1029/2012GL053385

    Article  Google Scholar 

  • Chepfer H, Bony S, Winker D, Cesana G, Dufresne JL, Minnis P, Stubenrauch CJ, Zeng S (2010) The GCM-Oriented CALIPSO cloud product (CALIPSO-GOCCP). J Geophys Res Atmos 115:D00H16. doi:10.1029/2009JD012251

    Article  Google Scholar 

  • Chepfer H, Cesana G, Winker D, Getzewich B, Vaughan M, Liu Z (2013) Comparison of Two different cloud climatologies derived from CALIOP-attenuated backscattered measurements (Level 1): the CALIPSO-ST and the CALIPSO-GOCCP. J Atmos Ocean Technol 30:725–744. doi:10.1175/JTECH-D-12-00057.1

    Article  Google Scholar 

  • Chepfer H, Noel V, Winker D, Chiriaco M (2014) Where and when will we observe cloud changes due to climate warming? Geophys Res Lett 41:8387–8395. doi:10.1002/2014GL061792

    Article  Google Scholar 

  • Cheruy F, Aires Filipe (2009) Cluster analysis of cloud properties over the southern European Mediterranean area in observations and a model. Mon Weather Rev 137:3161–3176. doi:10.1175/2009MWR2882.1

    Article  Google Scholar 

  • Cheruy F, Campoy A, Dupont J-C, Ducharne A, Hourdin F, Haeffelin M, Chiriaco M, Idelkadi A (2013) Combined influence of atmospheric physics and soil hydrology on the simulated meteorology at the SIRTA atmospheric observatory. Clim Dyn 40:2251–2269. doi:10.1007/s00382-012-1469-y

    Article  Google Scholar 

  • Chiriaco M, Vautard R, Chepfer H, Haeffelin M, Dudhia J, Wanherdrick Y, Morille Y, Protat A (2006) The ability of MM5 to simulate ice clouds: systematic comparison between simulated and measured fluxes and lidar/radar profiles at the SIRTA atmospheric observatory. Mon Weather Rev 134:897–918

    Article  Google Scholar 

  • Chiriaco M, Bastin S, Yiou P, Haeffelin M, Jean-Charles D, Stefanon M (2014) European heatwave in July 2006: observations and modeling showing how local processes amplify conducive large-scale conditions. Geophys Res Lett 41(15):5644–5652. doi:10.1002/2014GL060205

    Article  Google Scholar 

  • Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, Van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Drobinski P, Ducrocq V, Alpert P, Anagnostou E, Béranger K, Borga M, Braud I, Chanzy A, Davolio S, Delrieu G, Estournel C, Filali Boubrahmi N, Font J, Grubišić V, Gualdi S, Homar V, Ivančan-Picek B, Kottmeier C, Kotroni V, Lagouvardos K, Lionello P, Llasat MC, Ludwig W, Lutoff C, Mariotti A, Richard E, Romero R, Rotunno R, Roussot O, Ruin I, Somot S, Taupier-Letage I, Tintore J, Uijlenhoet R, Wernli H (2014) HyMeX: a 10-Year multidisciplinary program on the Mediterranean water cycle. Bull Am Meteorol Soc 95:1063–1082. doi:10.1175/BAMS-D-12-00242.1

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107. doi:10.1175/1520-0469(1989).046<3077:NSOCOD>2.0.CO;2

    Article  Google Scholar 

  • Flaounas E, Drobinski P, Vrac M, Bastin S, Lebeaupin-Brossier C, Stéfanon M, Borga M, Calvet JC (2013) Precipitation and temperature space-time variability and extremes in the Mediterranean region: evaluation of dynamical and statistical downscaling methods. Clim Dyn 40:2687–2705. doi:10.1007/s00382-012-1558-y

    Article  Google Scholar 

  • Flaounas E, Raveh-Rubin SA, Wernli H, Drobinski P, Bastin S (2014) The dynamical structure of intense Mediterranean cyclones. Clim Dyn 44:2411–2427. doi:10.1007/s00382-014-2330-2

    Article  Google Scholar 

  • Funatsu BM, Claud C, Chaboureau JP (2009) Comparison between the large-scale environment of moderate and intense precipitating systems in the Mediterranean region. Mon Weather Rev 137:3933–3959

    Article  Google Scholar 

  • Gettelman A, De Forster PMF (2002) A climatology of the tropical tropopause layer. J Meteorol Soc Jpn 80(4B):911–924. doi:10.2151/jmsj.80.911

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull. 58(3):175–183

    Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1107. doi:10.1175/2009BAMS2607.1

    Article  Google Scholar 

  • Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103–120

    Article  Google Scholar 

  • Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181. doi:10.1175/1520-0450(2004).043<0170:TKCPAU>2.0.CO;2

    Article  Google Scholar 

  • Khvorostyanov VI (1995) Mesoscale processes of cloud formation, cloud-radiation interaction, and their modelling with explicit cloud microphysics. Atmos Res 39(1–3):1–67. doi:10.1016/0169-8095(95)00012-G

    Article  Google Scholar 

  • Kjellström E, Nikulin G, Hansson U, Strandberg G, Ullerstig A (2011) 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations. Tellus A 63:24–40. doi:10.1111/j.1600-0870.2010.00475.x

    Article  Google Scholar 

  • Lebeaupin-Brossier C, Bastin S, Béranger K, Drobinski P (2015) Regional mesoscale air–sea coupling impacts and extreme meteorological events role on the Mediterranean Sea water budget. Clim Dyn 44:1029–1051. doi:10.1007/s00382-014-2252-z

    Article  Google Scholar 

  • Lenderink G, van Ulden A, van den Hurk B, van Meijgaard E (2007) Summertime inter-annual temperature variability in an ensemble of regional model simulations: analysis of the surface energy budget. Clim Change 81(1):233–274. doi:10.1007/s10584-006-9229-9

    Article  Google Scholar 

  • Mariotti A, Pan Yutong, Zeng Ning, Alessandri Andrea (2015) Long-term climate change in the Mediterranean region in the midst of decadal variability. Clim Dyn 44(5–6):1437–1456. doi:10.1007/s00382-015-2487-3

    Article  Google Scholar 

  • Mlawer JE, Taubma JS, Brown DP, Iancono MJ, Clough AS (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16663–16682. doi:10.1029/97JD00237

    Article  Google Scholar 

  • Monin AS, Obukhov A (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci USSR 151:163–187

    Google Scholar 

  • Nam C, Bony S, Dufresne J-L, Chepfer H (2012) The ‘too few, too bright’ tropical low-cloud problem in CMIP5 models. Geophys Res Lett 39:L21801. doi:10.1029/2012GL053421

    Article  Google Scholar 

  • Noh Y, Cheon WG, Hong SY (2003) Improvement of the k-profile model for the planetary boundary layer based on large eddy simulation data. Bound Layer Meteorol 107:401–427

    Article  Google Scholar 

  • Omrani H, Drobinski P, Dubos T (2013) Optimal nudging strategies in regional climate modelling: investigation in a big-brother experiment over the European and Mediterranean regions. Clim Dyn 41:2451–2470. doi:10.1007/s00382-012-1615-6

    Article  Google Scholar 

  • Omrani H, Drobinski P, Jourdier B, Brossier CL (2014) Investigation on the offshore wind energy potential over the north western Mediterranean Sea in a regional climate system model. In: IEEE, Renewable Energy Congress (IREC), 2014 5th International. doi:10.1109/IREC.2014.6826956

  • Reiter ER (1975) Handbook for forecasters in the Mediterranean: weather Phenomena of the Mediterranean Basin, Part 1. General Description of the Meteorological Processes. Environmental Prediction Research Facility Naval Postgraduate School, Monterey, CA, p. 344. Technique Paper 5–75

  • Rojas M, Li LZ, Kanakidou M, Hatzianastassiou N, Seze G, Le Treut H (2013) Winter weather regimes over the Mediterranean region: their role for the regional climate and projected changes in the twenty-first century. Clim Dyn. doi:10.1007/s00382-013-1823-8

    Google Scholar 

  • Ruti P, Somot S, Dubois C, Calmanti S, Ahrens B, Alias A, Aznar R, Bartholy J, Bastin S, Branger K, Brauch J, Calvet J-C, Carillo A, Decharme B, Dell’Aquila A, Djurdjevic V, Drobinski P, Elizalde-Arellano A, Gaertner M, Galn P, Gallardo C, Giorgi F, Gualdi S, Harzallah A, Herrmann M, Jacob D, Khodayar S, Krichak S, Lebeaupin C, L’Heveder B, Li L, Liguro G, Lionello P, Onol B, Rajkovic B, Sannino G, Sevault F (2015) MED-CORDEX initiative for Mediterranean climate studies. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-14-00176.1

    Google Scholar 

  • Rysman J-F, Verrier S, Lemaître Y, Moreau E (2013) Space-time variability of the rainfall over the western Mediterranean region: a statistical analysis. J Geophys Res Atmos 118:8448–8459. doi:10.1002/jgrd.50656

    Article  Google Scholar 

  • Salameh T, Drobinski P, Dubos T (2010) The effect of indiscriminate nudging time on large and small scales in regional climate modelling: application to the Mediterranean basin. Q J R Meteorol Soc 136(646):170–182. doi:10.1002/qj.518

    Article  Google Scholar 

  • Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227:3465–3485. doi:10.1016/j.jcp.2007.01.037

    Article  Google Scholar 

  • Smirnova TG, Brown JM, Stanley SG (1997) Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon Weather Rev 125:1870–1884. doi:10.1175/1520-0493(1997).125<1870:PODSMC>2.0.CO;2

    Article  Google Scholar 

  • Smirnova TG, Brown JM, Benjamin SG, Kim D (2000) Parameterization of cold-season processes in the MAPS land-surface scheme. J Geophys Res 105(D3):4077–4086. doi:10.1029/1999JD901047

    Article  Google Scholar 

  • Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean-atmosphere models. J Clim 19:3354–3360. doi:10.1175/JCLI3799.1

    Article  Google Scholar 

  • Stauffer DR, Seaman NL (1990) Use of four-dimensional data assimilation in a limited-area mesoscale model. Part i: experiments with synoptic-scale data. Mon Weather Rev 118(6):1250–1277. doi:10.1175/1520-0493(1990).118

    Article  Google Scholar 

  • Stefanon M, Drobinski P, D’Andrea F, Lebeaupin-Brossier C, Bastin S (2014) Soil moisture-temperature feedbacks at meso-scale during summer heat waves over Western Europe. Clim Dyn 42:1309–1324. doi:10.1007/s00382-013-1794-9

    Article  Google Scholar 

  • Stephens GL (2005) Cloud feedbacks in the climate system: a critical review. J Clim 18:237–273. doi:10.1175/JCLI-3243.1

    Article  Google Scholar 

  • Tang Q, Leng G, Groisman PY (2012) European hot summers associated with a reduction of cloudiness. J Clim 25:3637–3644. doi:10.1175/JCLI-D-12-00040.1

    Article  Google Scholar 

  • Trigo RM, Osborn TJ, Corte-Real JM (2002) The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms. Clim Res 20:9–17. doi:10.3354/cr020009

    Article  Google Scholar 

  • Tsushima Y, Ringer MA, Webb MJ, Williams KD (2013) Quantitative evaluation of the seasonal variations in climate model cloud regimes. Clim Dyn 41(9):2679–2696. doi:10.1007/s00382-012-1609-4

    Article  Google Scholar 

  • Vaittinada Ayar P, Vrac M, Bastin S, Carreau J, Gallardo C (2015) Intercomparison of statistical and dynamical downscaling models under the EURO- and MED-CORDEX initiative framework: present climate evaluations. Clim Dyn. doi:10.1007/s00382-015-2647-5

    Google Scholar 

  • Vautard R (1990) Multiple weather regimes over the North Atlantic: analysis of precursors and successors. Mon Weather Rev 118:2056–2081. doi:10.1175/1520-0493(1990).118<2056:MWROTN>2.0.CO;2

    Article  Google Scholar 

  • Winker DM, Pelon JR, McCormick MP (2003) The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds. In: Proceedings of SPIE 4893, Lidar remote sensing for industry and environment monitoring III, 1 (March 24, 2003). doi:10.1117/12.466539

  • Winker DM, Vaughan MA, Omar A, Hu Y, Powell KA (2009) Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J Atmos Ocean Technol 26:2310–2323. doi:10.1175/2009JTECHA1281.1

    Article  Google Scholar 

  • Xoplaki E, Gonzalez-Rouco JF, Luterbacher J, Wanner H (2004) Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Clim Dyn 23:63–78. doi:10.1007/s00382-004-0422-0

    Article  Google Scholar 

  • Yiou P, Vautard R, Naveau P, Cassou C (2007) Inconsistency between atmospheric dynamics and temperatures during the exceptional 2006/2007 fall/winter and recent warming in Europe. Geophys Res Lett 34:L21808. doi:10.1029/2007GL031981

    Article  Google Scholar 

Download references

Acknowledgments

This work is a contribution to the EECLAT project through Les Enveloppes Fluides et l’Environnement / Institut National des Sciences de l’Univers and Terre, Océan, Surfaces Continentales, Atmosphère/Centre National d’Etudes Spatiales supports and to the HyMeX program through INSU-MISTRALS support, and the Med-CORDEX program. Simulation was performed using Grand Equipement National de Calcul Intensif with granted access to the HPC resources of Institut du Développement et des Ressources en Informatique Scientifique (under allocation i2011010227). The authors would like to thank Climserv team for computing and storage resources. Marjolaine Chiriaco research is directly supported by Centre National d’Etudes Spatiales. The authors wish to thank Florian Rouvière, Gregory Césana, and Vincent Noël for their contribution to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chakroun.

Additional information

This paper is a contribution to the special issue on Med-CORDEX,an international coordinated initiative dedicated to the multi-component regional climate modelling (atmosphere, ocean, land surface, river) of the Mediterranean under the umbrella of HyMeX, CORDEX, and Med-CLIVAR and coordinated by Samuel Somot, Paolo Ruti, Erika Coppola, Gianmaria Sannino, Bodo Ahrens, and Gabriel Jordà.

Appendices

Appendix 1: Lidar equation

The scattering ratio SR is given by (1):

$$SR\left( z \right) = \frac{{ATB_{tot} \left( z \right)}}{{ATB_{mol} \left( z \right)}}$$
(1)

where \(ATB_{tot}\) and \(ATB_{mol}\) are respectively the attenuated backscattered signals for particles and molecules and for molecules only and are given by (2) and (3):

$$ATB_{tot} (z) = \left( {\beta_{sca,part} (z) + \beta_{sca,mol} (z)} \right).e^{{ - 2\eta \int_{{z_{TOA} }}^{z} {\alpha_{sca,part} \left( z \right) + \alpha_{sca,mol} \left( z \right).dz} }}$$
(2)
$$ATB_{mol} (z) = \beta_{sca,mol} (z).e^{{ - 2\eta \int_{{z_{TOA} }}^{z} {\alpha_{sca,mol} \left( z \right).dz} }}$$
(3)

ATBmol and ATBtot products are averaged vertically to obtain SR over 40 layers (Chepfer et al. 2008, 2010).

βsca,part, βsca,mol are lidar backscatter coefficients (m−1 sr−1) and αsca,part and αsca,mol attenuation coefficients (m−1) for particles (clouds, aerosols) and molecules. η is a multiple scattering coefficient that depends both on lidar characteristics and size, shape and density of particles. It is about 0.7 for CALIPSO (Winker et al. 2003; Chepfer et al. 2008).

Figure 10 illustrates two instantaneous SR profiles to help understand what a lidar signal looks like and how cloud detection is computed in this study. Above 10 km, SR(z) is around 1, indicating clear sky for both profiles. High clouds are detected in both profiles between 8 and 10 km: SR(z) of the blue profile reaches the value of 8 and while SR(z) of the red one goes up to 22. The magnitude of SR(z) depends on the cloud optical thickness from the Top Of Atmosphere (TOA) to the level z and the cloud microphysical properties such as the size of the particle or its shape. While the signal is fully attenuated for the red profile below 8 km (SR(z) is almost zero), the blue profile still detects low clouds around 2 km.

Fig. 10
figure 10

Two instantaneous observed SR vertical profiles (blue around [5°E; 47°N] and red around [5°E; 43°N]) in 2009/01/19 at night, and vertical black line represents the SR = 5 threshold for cloud detection. Red box in (a) represents the Mediterranean Sea area while the blue box is for Europe area

Appendix 2: Simulated cloud fraction maps

Figure 11 shows that: for high clouds, a north–south gradient exists in winter with about 10 % of clouds over North Africa and more than 50 % above continental Europe, while in summer, this gradient is north–west/south–east, with almost no high clouds over Turkish and eastern part of Mediterranean basin. In winter, most mid and low clouds occur above the north-eastern part of Europe. In summer, very few mid and low clouds are simulated and they are mostly induced by orography.

Fig. 11
figure 11

Winter cloud fraction maps (CF TWRF : cloud fraction computed from the model without lidar simulator) averaged from 2006 to 2011 for simulation low clouds (a), mid-clouds (b) and high clouds (c). df are the same but for summer

Appendix 3: Simulated winter 2010 high clouds anomaly

See Fig. 12.

Fig. 12
figure 12

Winter 2010 high clouds anomaly computed with CF TWRF+sim relative to the average high cloud map of winters from 1990 to 2011

Appendix 4

The CALIPSO undersampling error estimation from observed cloud fraction profiles is defined as:

\(\varepsilon \, \left( z \right) = \left| {CF_{GOCCP} \left( z \right) - CF_{GOCCP}^{T} \left( z \right)} \right|with\,CF_{GOCCP}^{T} \left( z \right)\) a theoretical cloud fraction that we would have with a complete sampling (observations over all the grid-boxes every 00 UTC).

We define α(z) as the relative model bias, so \(\alpha \left( z \right) = \frac{{ CF_{WRF + sim} \left( z \right)}}{{CF_{GOCCP} \left( z \right)}}\)

We used a set of different samplings to test if α(z) can be considered as constant, i.e. independent of the number of profiles in the sampling. To do that, since we need both observations and simulation to test this hypothesis, we reduced the CALIPSO sampling using only 1 profile over 2 (test 7), 1 over 3 (test 6), and so on down to one profile over 20. Table 4 presents the results of these tests and indicates the α values for low, mid and high clouds. This shows that if the number of profiles become greater than 1/15 of the CALIPSO sampling, α(z) can be considered as nearly constant.

Table 4 Computing model biases over continent (\(\alpha = \frac{{CF_{WRF + sim} \left( z \right)}}{{ CF_{GOCCP} \left( z \right)}}\)) for low clouds (1st row), mid clouds (2nd row) and high clouds (3rd row) by testing different samplings (test 1 means we extract 1 profile over 20 and test 8 means we extract all the profiles)

We deduce that: \(\alpha \left( z \right) = \frac{{ CF_{WRF + sim}^{T} \left( z \right)}}{{CF_{GOCCP}^{T} \left( z \right)}}\)

and ε (z) can be written as \(\varepsilon = \frac{{\left| {CF_{WRF + sim} \left( z \right) - CF_{WRF + sim}^{T} \left( z \right)} \right| }}{\alpha \left( z \right)} = \frac{\beta \left( z \right)}{ \alpha \left( z \right)}\) with β(z) defined as the error of undersampling estimated by the simulation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakroun, M., Bastin, S., Chiriaco, M. et al. Characterization of vertical cloud variability over Europe using spatial lidar observations and regional simulation. Clim Dyn 51, 813–835 (2018). https://doi.org/10.1007/s00382-016-3037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3037-3

Keywords