Skip to main content

Advertisement

Log in

Multi-year wind dynamics around Lake Tanganyika

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Lake Tanganyika is the second largest freshwater lake in the world by volume and is of prime importance for the regional economy in East Africa. Although the lake is recognized as a key component of the regional climate system, little is known about atmospheric dynamics in its surroundings. To understand this role, we analyze winds around Lake Tanganyika as modeled by a high resolution (7 km) regional climate model (Consortium for Small-scale Modeling in Climate Mode) over the period 1999–2008. Modeled surface wind speed and direction are in very good agreement with high resolution (12.5 km) Quick Scatterometer (QuikSCAT) satellite wind observations during the dry season. Comparison of a control run with a model simulation where all lake pixels are replaced by representative land pixels indicates that mean surface wind speed over Lake Tanganyika almost doubles due to lake presence. Furthermore, a region of higher surface wind speed in the central part of the lake is identified and confirmed by QuikSCAT observations. A combination of wind channeling along valley mountains and wind confluence on the upwind side of the lake is responsible for this speed-up. The lower wind speeds in the rest of the lake result from blocked conditions due to more pronounced orography. Finally, the model captures a zone of higher wind speed at around 2 km height, associated with the low-level Somali jet. These results demonstrate that high resolution climate modeling allows a detailed understanding of wind dynamics in the vicinity of Lake Tanganyika.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akkermans T, Lauwaet D, Demuzere M, Vogel G, Nouvellon Y, Ardö J, Caquet B, De Grandcourt A, Merbold L, Kutsch W, Van Lipzig N (2012) Validation and comparison of two soil-vegetation-atmosphere transfer models for tropical Africa. J Geophys Res 117(G02):013. doi:10.1029/2011JG001802

    Google Scholar 

  • Akkermans T, Rompaey AV, Lipzig NV (2013) Quantifying successional land cover after clearing of tropical rainforest along forest frontiers in the Congo Basin. Phys Geogr 34(6):417–440. doi:10.1080/02723646.2013.855698

    Google Scholar 

  • Akkermans T, Thiery W, Van Lipzig NPM (2014) The regional climate impact of a realistic future deforestation scenario in the Congo Basin. J Clim 27(7):2714–2734. doi:10.1175/JCLI-D-13-00361.1

    Article  Google Scholar 

  • Bentamy A, Grodsky SA, Carton JA, Croiz-Fillon D, Chapron B (2012) Matching ASCAT and QuikSCAT winds. J Geophys Res Oceans. doi:10.1029/2011JC007479

    Google Scholar 

  • Chakraborty A, Nanjundiah RS, Srinivasan J (2009) Impact of african orography and the indian summer monsoon on the low-level somali jet. Int J Climatol 29(7):983–992. doi:10.1002/joc.1720

    Article  Google Scholar 

  • Coulter GW (1991) Lake Tanganyika and its life. Oxford University Press, London

    Google Scholar 

  • Davarzani H, Smits K, Tolene RM, Illangasekare T (2014) Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface. Water Resour Res 50:661–680. doi:10.1002/2013WR013952

    Article  Google Scholar 

  • Davin EL, Seneviratne SI (2012) Role of land surface processes and diffuse/direct radiation partitioning in simulating the European climate. Biogeosciences 9(5):1695–1707. doi:10.5194/bg-9-1695-2012

    Article  Google Scholar 

  • Fore A, Stiles B, Chau A, Williams B, Dunbar R, Rodriguez E (2014) Point-wise wind retrieval and ambiguity removal improvements for the QuikSCAT climatological data set. IEEE Trans Geosci Remote Sens 52(1):51–59. doi:10.1109/TGRS.2012.2235843

    Article  Google Scholar 

  • Hastings DA, Dunbar PK, Elphingstone GM, Bootz M, Murakami H, Maruyama H, Masaharu H, Holland P, Payne J, Bryant NA, Logan TL, Muller JP, Schreier G, MacDonald JS (1999) The global land one-kilometer base elevation (GLOBE) digital elevation model, version 1.0. http://www.ngdc.noaa.gov/mgg/topo/globe.html

  • Holton JR (2004) An introduction to dynamic meteorology, 4th edn. Academic Press, London

    Google Scholar 

  • Kraemer BM, Hook S, Huttula T, Kotilainen P, OReilly CM, Peltonen A, Plisnier PD, Sarvala J, Tamatamah R, Vadeboncoeur Y, Wehrli B, McIntyre PB (2015) Century-long warming trends in the upper water column of Lake Tanganyika. PLoS One 10(7):e0132,490. doi:10.1371/journal.pone.0132490

    Article  Google Scholar 

  • Mironov DV, Heise E, Kourzeneva E, Ritter B, Schneider N, Terzhevik A (2010) Implementation of the lake parameterisation scheme Flake into the numerical weather prediction model COSMO. Boreal Environ Res 15:218–230

    Google Scholar 

  • Naithani J, Deleersnijder E, Plisnier PD (2002) Origin of intraseasonal variability in Lake Tanganyika. Geophys Res Lett 29(23):2093. doi:10.1029/2002GL015843

    Article  Google Scholar 

  • Naithani J, Deleersnijder E, Plisnier P (2003) Analysis of wind-induced thermocline oscillations of Lake Tanganyika. Environ Fluid Mech 3:23–39

    Article  Google Scholar 

  • Nghiem SV, Leshkevich GA, Stiles BW (2004) Wind fields over the Great Lakes measured by the SeaWinds Scatterometer on the QuikSCAT Satellite. J Great Lakes Res 30(1):148–165. doi:10.1016/S0380-1330(04)70337-8

    Article  Google Scholar 

  • Niang I, Ruppel O, Abdrabo M, Essel A, Lennard C, Padgham J, Urquhart P (2014) Africa. In: Barros V, Field C, Dokken D, Mastrandrea M, Mach K, Bilir T, Chatterjee M, Ebi K, Estrada Y, Genova R, Girma B, Kissel E, Levy A, MacCracken S, Mastrandrea P, White L (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1199–1265

  • Nicholson S (1996) A review of climate dynamics and climate variability in Eastern Africa. In: Johnson T, Odada E (eds) The limnology, climatology and paleoclimatology of the East African lakes. Gordon and Breach, Amsterdam, pp 25–56

    Google Scholar 

  • Plisnier P, Chitamwebwa D, Mwape L, Tshibangu K, Langenberg V, Coenen E (1999) Limnological annual cycle inferred from physical-chemical fluctuations at three stations of Lake Tanganyika. Hydrobiologia 407:45–58

    Article  Google Scholar 

  • Reinecke PA, Durran DR (2008) Estimating topographic blocking using a Froude number when the static stability is nonuniform. J Atmos Sci 65:1035–1048

    Article  Google Scholar 

  • Savijärvi H (1997) Diurnal winds around Lake Tanganyika. Q J R Meteorol Soc 123:901–918

    Article  Google Scholar 

  • Savijärvi H, Järvenoja S (2000) Aspects of the fine-scale climatology over Lake Tanganyika as resolved by a mesoscale model. Meteorol Atmos Phys 73(1–2):77–88

    Article  Google Scholar 

  • Thiery W, Martynov A, Darchambeau F, Descy JP, Plisnier PD, Sushama L, van Lipzig NPM (2014) Understanding the performance of the FLake model over two African Great Lakes. Geosci Model Dev 7(1):317–337. doi:10.5194/gmd-7-317-2014

    Article  Google Scholar 

  • Thiery W, Stepanenko VM, Fang X, Jöhnk KD, Li Z, Martynov A, Perroud M, Subin ZM, Darchambeau F, Mironov D (2014b) LakeMIP Kivu: Evaluating the representation of a large, deep tropical lake by a set of 1-dimensional lake models. Tellus A 66(21):390. doi:10.3402/tellusa.v66.21390

    Google Scholar 

  • Thiery W, Davin E, Panitz HJ, Demuzere M, Lhermitte S, van Lipzig N (2015) The impact of the African Great Lakes on the regional climate. J Clim 28(10):4061–4085. doi:10.1175/JCLI-D-14-00565.1

    Article  Google Scholar 

  • Tierney J, Mayes M, Meyer N (2010) Late-twentieth-century warming in Lake Tanganyika unprecedented since AD 500. Nat Geosci 3:422–425. doi:10.1038/NGEO865

    Article  Google Scholar 

  • van Lipzig N, Marshall G, Orr A, King J (2008) The relationship between the southern hemisphere annular mode and Antarctic Peninsula summer temperatures: Analysis of a high-resolution model climatology. J Clim 21(8):1649–1668. doi:10.1175/2007JCLI1695.1

    Article  Google Scholar 

  • Verburg P, Antenucci JP (2010) Persistent unstable atmospheric boundary layer enhances sensible and latent heat loss in a tropical great lake: Lake Tanganyika. J Geophys Res 115(D11):109. doi:10.1029/2009JD012839

    Article  Google Scholar 

  • Verburg P, Hecky R (2003) Wind patterns, evaporation, and related physical variables in Lake Tanganyika, East Africa. J Great Lakes Res 29:48–61

    Article  Google Scholar 

  • Verburg P, Hecky R (2009) The physics of the warming of Lake Tanganyika by climate change. Limnol Oceanogr 54:2418–2430

    Article  Google Scholar 

  • Verburg P, Antenucci JP, Hecky RE (2011) Differential cooling drives large-scale convective circulation in Lake Tanganyika. Limnol Oceanogr 56(3):910–926. doi:10.4319/lo.2011.56.3.0910

    Article  Google Scholar 

  • Wallace JM, Hobbs PV (2006) Atmospheric Science. Elsevier, Philadelphia

    Google Scholar 

Download references

Acknowledgments

We would like to thank Y. Cornet and N. Poncelet for the interesting discussion concerning lake surface water temperature over the African Great Lakes. We also thank I. Gorodetskaya for her input during group discussion. We sincerely thank the editor and two reviewers for their constructive remarks which helped to improve the manuscript. D. Docquier is funded by the Belgian Science Policy Office (BELSPO) through the research project EAGLES. W. Thiery and S. Lhermitte are funded by the Research Foundation Flanders (FWO). The computational resources and services used in this work were provided by the Flemish Supercomputer Center (VSC), funded by the Hercules Foundation and the Flemish Government—department EWI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Docquier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Docquier, D., Thiery, W., Lhermitte, S. et al. Multi-year wind dynamics around Lake Tanganyika. Clim Dyn 47, 3191–3202 (2016). https://doi.org/10.1007/s00382-016-3020-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3020-z

Keywords

Navigation