Climate Dynamics

, Volume 47, Issue 7–8, pp 2543–2560 | Cite as

Correcting North Atlantic sea surface salinity biases in the Kiel Climate Model: influences on ocean circulation and Atlantic Multidecadal Variability

  • T. Park
  • W. Park
  • M. LatifEmail author


A long-standing problem in climate models is the large sea surface salinity (SSS) biases in the North Atlantic. In this study, we describe the influences of correcting these SSS biases on the circulation of the North Atlantic as well as on North Atlantic sector mean climate and decadal to multidecadal variability. We performed integrations of the Kiel Climate Model (KCM) with and without applying a freshwater flux correction over the North Atlantic. The quality of simulating the mean circulation of the North Atlantic Ocean, North Atlantic sector mean climate and decadal variability is greatly enhanced in the freshwater flux-corrected integration which, by definition, depicts relatively small North Atlantic SSS biases. In particular, a large reduction in the North Atlantic cold sea surface temperature bias is observed and a more realistic Atlantic Multidecadal Variability simulated. Improvements relative to the non-flux corrected integration also comprise a more realistic representation of deep convection sites, sea ice, gyre circulation and Atlantic Meridional Overturning Circulation. The results suggest that simulations of North Atlantic sector mean climate and decadal variability could strongly benefit from alleviating sea surface salinity biases in the North Atlantic, which may enhance the skill of decadal predictions in that region.


Sea surface salinity Climate modeling Model bias Atlantic meridional overturning circulation Atlantic multidecadal variability 



This work was supported by the Excellence Cluster “Future Ocean” of DFG, BMBF-funded project RACE (No. 03F0651B) and the EU-funded project NACLIM (grant agreement No. 308299). The climate model integrations were performed at the Computing Center of Kiel University and at DKRZ Hamburg.

Supplementary material

382_2016_2982_MOESM1_ESM.docx (2.2 mb)
Supplementary material 1 (DOCX 2.15 mb)


  1. Ba J et al (2013) A mechanism for Atlantic multidecadal variability in the Kiel Climate Model. Clim Dyn 41:2133–2144. doi: 10.1007/s00382-012-1633-4 CrossRefGoogle Scholar
  2. Ba J et al (2014) A multi-model comparison for Atlantic multidecadal variability. Clim Dyn 43:2333–2348. doi: 10.1007/s00382-014-2056-1 CrossRefGoogle Scholar
  3. Carton JA, Grodsky SA, Liu Hailong (2008) Variability of the oceanic mixed layer, 1960–2004. J Climate 21:1029–1047. doi: 10.1175/2007JCLI1798.1 CrossRefGoogle Scholar
  4. de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi: 10.1029/2004JC002378 CrossRefGoogle Scholar
  5. Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the northern hemisphere. Clim Dyn 16:661–676CrossRefGoogle Scholar
  6. Delworth TL, Rosati A, Anderson W et al (2012) Simulated climate and climate change in the GFDL CM2. 5 high-resolution coupled climate model. J Climate 25:2755–2781. doi: 10.1175/jcli-d-11-00316.1 CrossRefGoogle Scholar
  7. Drews A, Greatbatch RJ, Ding H et al (2015) The use of a flow field correction technique for alleviating the North Atlantic cold bias with application to the Kiel Climate Model. Ocean Dyn 65:1079–1093. doi: 10.1007/s10236-015-0853-7 CrossRefGoogle Scholar
  8. Drijfhout S (2015) Competition between global warming and an abrupt collapse of the AMOC in Earth’s energy imbalance. Sci Rep 5:14877. doi: 10.1038/srep14877 CrossRefGoogle Scholar
  9. Flato G et al (2013) Evaluation of climate models. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  10. Gulev SK, Latif M, Keenlyside NS, Koltermann KP (2013) North Atlantic Ocean control on surface heat flux at multidecadal timescales. Nature 499. doi: 10.1038/nature12268
  11. Hofmann M, Rahmstorf S (2009) On the stability of the Atlantic meridional overturning circulation. PNAS 49. doi: 10.1073/pnas.0909146106
  12. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  13. Keeley SPE, Sutton RT, Shaffrey LC (2012) The impact of North Atlantic sea surface temperature errors on the simulation of North Atlantic European region climate. Q J R Meteorol Soc 138:1774–1783. doi: 10.1002/qj.1912 CrossRefGoogle Scholar
  14. Knight JR et al (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi: 10.1029/2005GL024233 CrossRefGoogle Scholar
  15. Latif M (2013) The oceans’ role in modeling and predicting decadal climate variations. In: Siedler G, Griffies S, Gould J, Church J (eds) Ocean circulation and climate, 2nd edn. A 21st century perspective. International Geophysics Series, Volume 103, ISBN: 9780123918512. Academic Press, New YorkGoogle Scholar
  16. Latif M et al (2004) Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J Climate 17:1605–1614CrossRefGoogle Scholar
  17. Latif M et al (2006) Is the thermohaline circulation changing? J Climate 19:4631–4637CrossRefGoogle Scholar
  18. Manabe S, Stouffer RJ (1988) Two stable equilibria of a coupled ocean–atmosphere model. J. Climate 1:841–866CrossRefGoogle Scholar
  19. Marshall J, Schott F (1999) Open-ocean convection: observations, theory, and models. Rev Geophys 37(1):1–64. doi: 10.1029/98RG02739 CrossRefGoogle Scholar
  20. Marshall J, Johnson H, Goodman J (2001) A study of the interaction of the North Atlantic oscillation with ocean circulation. J Climate 14:1399–1421CrossRefGoogle Scholar
  21. Park W et al (2009) Tropical Pacific Climate and its response to global warming in the Kiel Climate Model. J Climate 22:71–92CrossRefGoogle Scholar
  22. Rayner NA et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  23. Sausen R, Barthel K, Hasselmann K (1988) Coupled ocean–atmosphere models with flux correction. Clim Dyn 2:145–163CrossRefGoogle Scholar
  24. Scaife AA, Copsey D, Gordon C, Harris C, Hinton T, Keeley S, O’Neill A, Roberts M, Williams K (2011) Improved Atlantic winter blocking in a climate model. Geophys Res Lett 38:L23703. doi: 10.1029/2011GL049573 CrossRefGoogle Scholar
  25. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  26. Thompson DWJ, Wallace JM (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25(9):1297–1300CrossRefGoogle Scholar
  27. Tonboe R, Eastwood S, Lavergne T, Pedersen LT (2011) EUMETSAT OSI SAF global sea ice concentration reprocessing data. Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data. National Snow and Ice Data Center, BoulderGoogle Scholar
  28. Wang C, Zhang L (2013) Multidecadal ocean temperature and salinity variability in the Tropical North Atlantic: linking with the AMO, AMOC, and subtropical cell. J Climate 26:6137–6162CrossRefGoogle Scholar
  29. Wang C et al (2014) A global perspective on CMIP5 climate model biases. Nature Climate Change 4:201–205. doi: 10.1038/nclimate2118 CrossRefGoogle Scholar
  30. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi: 10.1029/2006GL026267 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.GEOMAR Helmholtz-Zentrum für Ozeanforschung KielKielGermany
  2. 2.Universität KielKielGermany

Personalised recommendations