A modeling investigation of the Arctic sea ice-atmosphere feedback

Abstract

We examine the effects of a general sea ice-atmosphere feedback (SAF) over the Barents Sea by turning it on and off in a coupled climate model. The SAF is “turned off” by forcing the atmosphere with surface turbulent and longwave heat fluxes and surface temperatures that reflect climatological sea ice cover over the Barents Sea, while allowing the sea ice and sea surface temperature (SST) to freely evolve. Suppressing the SAF reduces the variability of near-surface air temperature (T), sea ice concentration (I) , and SST averaged over the Barents Sea by up to 35 %, confirming the existence of a positive thermodynamically-driven SAF found in prior uncoupled modeling studies. Decreased interannual variability accounts for most of the total reduction in I, T, and SST variability, and the largest reductions in variability occur during the winter sea ice growth and spring melt seasons. In contrast to the results from the coupled model experiment, the total variances of I, T, and SST do not significantly change in response to suppressing the SAF in a simple vector autoregressive model, indicating that the SAF is nonlinear.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alexander MA, Bhatt US, Walsh JE, Timlin MS, Miller JS, Scott JD (2004) The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J Clim 17:890–905

    Article  Google Scholar 

  2. Bailey D, Hannay C, Holland M, Neale R (2013) Slab ocean model forcing. National Center for Atmospheric Research, Boulder, CO. http://www.cesm.ucar.edu/models/cesm1.1/data8/doc/som

  3. Bitz CM, Shell KM, Gent PR, Bailey D, Danabasoglu G, Armour KC, Holland MM, Kiehl JT (2012) Climate sensitivity of the community climate system model version 4. J Clim 25:3053–3070. doi:10.1175/JCLI-D-11-00290.1

    Article  Google Scholar 

  4. Boé J, Hall A, Qu X (2009) Current GCMs’ unrealistic negative feedback in the Arctic. J Clim 22:4682–4695. doi:10.1175/2009JCLI2885.1

    Article  Google Scholar 

  5. Bony S, Colman R, Kattsov VM, Allan RP, Bretherton CS, Dufresne JL, Hall A, Hallegatte S, Holland MM, Ingram W, Randall DA, Soden BJ, Tselioudis G, Webb MJ (2006) How well do we understand and evaluate climate change feedback processes? J Clim 19:3445–3482

    Article  Google Scholar 

  6. Curry JA, Schramm JL, Ebert EE (1995) Sea ice-albedo climate feedback mechanism. J Clim 8:240–247

    Article  Google Scholar 

  7. Deser C, Walsh JE, Timlin MS (2000) Arctic sea ice variability in the context of recent atmospheric circulation trends. J Clim 13:617–633

    Article  Google Scholar 

  8. Deser C, Magnusdottir G, Saravanan R, Phillips AS (2004) The effects of North Atlantic SST and sea-ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. J Clim 17:877–889. doi:10.1175/1520-0442(2004)017<0877:TEONAS>2.0.CO;2

  9. Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26

    Article  Google Scholar 

  10. Enders W (2004) Applied econometric time series, 2nd edn. Wiley, Hoboken

    Google Scholar 

  11. Frankignoul C, Sennéchael N, Cauchy P (2014) Observed atmospheric response to cold season sea ice variability in the Arctic. J Clim 27:1243–1254. doi:10.1175/JCLI-D-13-00189.1

    Article  Google Scholar 

  12. Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang ZL, Zhang M (2011) The community climate system model version 4. J Clim 24:4973–4991. doi:10.1175/2011JCLI4083.1

    Article  Google Scholar 

  13. Hall A (2004) The role of surface albedo feedback in climate. J Clim 17:1550–1568. doi:10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2

  14. Hunke EC, Lipscomb WH (2008) CICE: The Los Alamos sea ice model user’s manual, version 4. Tech. Rep. LA-CC-06-012, Los Alamos National Laboratory

  15. Jung T, Hilmer M (2001) The link between the North Atlantic Oscillation and Arctic sea ice export through Fram Strait. J Clim 14:3932–3943

    Article  Google Scholar 

  16. Kauffman BG, Jacob R, Craig T, Large WG (2004) The CCSM coupler version 6.0 user’s guide, source code reference, and scientific description

  17. Kwok R, Cunningham GF, Pang SS (2004) Fram Strait sea ice outflow. J Geophys Res 109(C1):C01,009. doi:10.1029/2003JC001785

    Article  Google Scholar 

  18. Kwok R, Cunningham GF, Wensnahan M, Rigor I, Zwally HJ, Yi D (2009) Thinning and volume loss of the Arctic Ocean sea ice cover. J Geophys Res 114:C07005. doi:10.1029/2009JC005312

    Article  Google Scholar 

  19. Liptak J, Strong C (2014a) A model-based decomposition of the sea ice-atmosphere feedback over the Barents Sea during winter. J Clim 27:2533–2544. doi:10.1175/JCLI-D-13-00371.1

    Article  Google Scholar 

  20. Liptak J, Strong C (2014b) The winter atmospheric response to sea ice anomalies in the Barents Sea. J Clim 27:914–924. doi:10.1175/JCLI-D-13-00186.1

    Article  Google Scholar 

  21. Magnusdottir G, Deser C, Saravanan R (2004) The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: main features and storm track characteristics of the response. J Clim 17:857–876. doi:10.1175/1520-0442(2004)017<0857:TEONAS>2.0.CO;2

  22. Maslanik J, Drobot S, Fowler C, Emery W, Barry R (2007a) On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophys Res Lett. doi:10.1029/2006GL028269

    Google Scholar 

  23. Maslanik J, Drobot S, Fowler C, Emery W, Barry R (2007b) A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss. Geophys Res Lett. doi:10.1029/2007GL032043

    Google Scholar 

  24. Neale RB, Richter JH, Conley AJ, Park S, Lauritzen PH, Gettelman A, Williamson DL, Rasch PJ, Vavrus SJ, Taylor MA, Collins WD, Zhang M, Lin S (2010) Description of the NCAR Community Atmosphere Model (CAM 4.0). Tech. Rep. NCAR/TN-485+STR, National Center For Atmospheric Research, Boulder, CO, USA

  25. Nghiem SV, Rigor IG, Perovich DK, Clemente-Colón P, Weatherly JW, Neumann G (2007) Rapid reduction of Arctic perennial sea ice. Geophys Res Lett. doi:10.1029/2007GL031138

    Google Scholar 

  26. Parkinson CL, Cavalieri DJ (2008) Arctic sea ice variability and trends, 1979–2006. J Geophys Res 113(C07):003. doi:10.1029/2007JC004558

    Google Scholar 

  27. Perovich DK, Richter-Menge JA (2009) Loss of sea ice in the Arctic. Ann Rev Mar Sci 1:417–441. doi:10.1146/annurev.marine.010908.163805

    Article  Google Scholar 

  28. Pithan F, Mauritsen T (2014) Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat Geosci. doi:10.1038/ngeo2071

    Google Scholar 

  29. Politis DN, White H (2004) Automatic block-length selection for the dependent bootstrap. Econ Rev 23:53–70. doi:10.1081/ETC-12002

    Article  Google Scholar 

  30. Rigor IG, Wallace JM (2004) Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophys Res Lett 31(L09):401. doi:10.1029/2004GL019492

    Google Scholar 

  31. Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1533–1536

    Article  Google Scholar 

  32. Sims CA (1980) Macroeconomics and reality. Econometrica 48:1–48. doi:10.2307/1912017

    Article  Google Scholar 

  33. Smedsrud LH, Sirevaag A, Kloster K, Sorteberg A, Sandven S (2011) Recent wind driven high sea ice export in the Fram Strait contributes to Arctic sea ice decline. The Cryosphere Discuss 5:1311–1334

    Article  Google Scholar 

  34. Stroeve JC, Markus T, Boisvert L, Miller J, Barrett A (2014) Changes in Arctic melt season and implications for sea ice loss. Geophys Res Lett 41:1216–1225. doi:10.1002/2013GL058951

    Article  Google Scholar 

  35. Strong C, Magnusdottir G (2010) Dependence of NAO variability on coupling with sea ice. Clim Dyn 36:1681–1689. doi:10.1007/s00382-010-0752-z

    Article  Google Scholar 

  36. Strong C, Magnusdottir G, Stern H (2009) Observed feedback between winter sea ice and the North Atlantic Oscillation. J Clim 22:6021–6032

    Article  Google Scholar 

  37. Tsukernik M, Deser C, Alexander M, Tomas R (2010) Atmospheric forcing of Fram Strait sea ice export: a closer look. Clim Dyn 35:1349–1360

    Article  Google Scholar 

  38. Ukita J, Honda M, Nakamura H, Tachibana Y, Cavlieri DJ, Parkinson CL, Koide H, Yamamoto K (2007) Northern Hemisphere sea ice variability: lag structure and its implications. Tellus Ser A 59:261–272. doi:10.111/j.1600-0870.2006.0223.x

    Article  Google Scholar 

  39. Vinje T (2001) Anomalies and trends in sea-ice extent and atmospheric circulation in the Nordic Seas during the period 1864–1998. J Clim 14:3503–3517

    Google Scholar 

  40. Wilks DS (2011) Statistical methods in the atmospheric sciences, 3rd edn. Elsevier Inc., California

    Google Scholar 

  41. Wu B, Wang J, Walsh JE (2006) Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. J Clim 19(2):210–225. doi:10.1175/JCLI3619.1

    Article  Google Scholar 

  42. Yamamoto K, Tachibana Y, Honda M, Ukita J (2006) Intra-seasonal relationship between the Northern Hemisphere sea ice variability and the North Atlantic Oscillation. Geophys Res Lett 33(L14):711. doi:10.1029/2006GL026286

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation Arctic Sciences Division Grant 1022485. Provision of computer infrastructure by the Center for High Performance Computing at the University of Utah is gratefully acknowledged. We thank two anonymous reviewers for their helpful commentary.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jessica Liptak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 0 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liptak, J., Strong, C. A modeling investigation of the Arctic sea ice-atmosphere feedback. Clim Dyn 47, 2471–2480 (2016). https://doi.org/10.1007/s00382-016-2976-z

Download citation

Keywords

  • Feedback
  • Climate modeling
  • Sea ice