Skip to main content

Advertisement

Log in

Stable AMOC off state in an eddy-permitting coupled climate model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Shifts between on and off states of the Atlantic Meridional Overturning Circulation (AMOC) have been associated with past abrupt climate change, supported by the bistability of the AMOC found in many older, coarser resolution, ocean and climate models. However, as coupled climate models evolved in complexity a stable AMOC off state no longer seemed supported. Here we show that a current-generation, eddy-permitting climate model has an AMOC off state that remains stable for the 450-year duration of the model integration. Ocean eddies modify the overall freshwater balance, allowing for stronger northward salt transport by the AMOC compared with previous, non eddy-permitting models. As a result, the salinification of the subtropical North Atlantic, due to a southward shift of the intertropical rain belt, is counteracted by the reduced salt transport of the collapsed AMOC. The reduced salinification of the subtropical North Atlantic allows for an anomalous northward freshwater transport into the subpolar North Atlantic dominated by the gyre component. Combining the anomalous northward freshwater transport with the freshening due to reduced evaporation in this region helps stabilise the AMOC off state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Blunier T, Brook EJ (2001) Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291(5501):109–112. doi:10.1126/science.291.5501.109

    Article  Google Scholar 

  • Broecker WS, Bond G, Klas M, Bonani G, Wolfli W (1990) A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanography 5(4):469–477

    Article  Google Scholar 

  • Bryden HL, King BA, McCarthy GD (2011) South Atlantic overturning circulation at 24 S. J Mar Res 69(1):38–55. doi:10.1357/002224011798147633

    Article  Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the Physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Danabasoglu G, Yeager SG, Bailey D, Behrens E, Bentsen M, Bi D, Biastoch A, Böning C, Bozec A, Canuto VM et al (2014) North Atlantic simulations in coordinated ocean–ice reference experiments phase II (CORE-II). Part I: mean states. Ocean Model 73:76–107. doi:10.1016/j.ocemod.2013.10.005

    Article  Google Scholar 

  • Dansgaard W, Johnsen S, Clausen H, Dahl-Jensen D, Gundestrup N, Hammer C, Hvidberg C, Steffensen J, Sveinbjörnsdottir A, Jouzel J et al (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364(6434):218–220. doi:10.1038/364218a0

    Article  Google Scholar 

  • de Abreu L, Shackleton NJ, Schönfeld J, Hall M, Chapman M (2003) Millennial-scale oceanic climate variability off the Western Iberian margin during the last two glacial periods. Mar Geol 196(1):1–20. doi:10.1016/S0025-3227(03)00046-X

    Article  Google Scholar 

  • de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res Oceans (1978–2012). doi:10.1029/2004JC002378

  • de Vries P, Weber SL (2005) The Atlantic freshwater budget as a diagnostic for the existence of a stable shut down of the meridional overturning circulation. Geophys Res Lett. doi:10.1029/2004GL021450

    Google Scholar 

  • Delworth TL, Rosati A, Anderson W, Adcroft AJ, Balaji V, Benson R, Dixon K, Griffies SM, Lee HC, Pacanowski RC et al (2012) Simulated climate and climate change in the GFDL CM2. 5 high-resolution coupled climate model. J Clim 25(8):2755–2781. doi:10.1175/JCLI-D-11-00316.1

    Article  Google Scholar 

  • Dijkstra HA (2007) Characterization of the multiple equilibria regime in a global ocean model. Tellus A 59(5):695–705. doi:10.1111/j.1600-0870.2007.00267.x

    Article  Google Scholar 

  • Drijfhout SS (2010) The atmospheric response to a thermohaline circulation collapse: scaling relations for the hadley circulation and the response in a coupled climate model. J Clim 23(3):757–774. doi:10.1175/2009JCLI3159.1

    Article  Google Scholar 

  • Drijfhout SS (2014) Global radiative adjustment after a collapse of the Atlantic meridional overturning circulation. Clim Dyn. 1–11. doi:10.1007/s00382-014-2433-9

  • Drijfhout SS, Weber SL, van der Swaluw E (2011) The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates. Clim Dyn 37(7–8):1575–1586. doi:10.1007/s00382-010-0930-z

    Article  Google Scholar 

  • Garzoli SL, Baringer MO, Dong S, Perez RC, Yao Q (2013) South Atlantic meridional fluxes. Deep Sea Res Part I 71:21–32. doi:10.1016/j.dsr.2012.09.003

    Article  Google Scholar 

  • Hansen B, Østerhus S (2007) Faroe bank channel overflow 1995–2005. Prog Oceanogr 75(4):817–856. doi:10.1016/j.pocean.2007.09.004

    Article  Google Scholar 

  • Hawkins E, Smith RS, Allison LC, Gregory JM, Woollings TJ, Pohlmann H, de Cuevas B (2011) Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophys Res Lett. doi:10.1029/2011GL047208

    Google Scholar 

  • Hewitt H, Copsey D, Culverwell I, Harris C, Hill R, Keen A, McLaren A, Hunke E (2011) Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system. Geosci Model Dev 4(2):223–253. doi:10.5194/gmd-4-223-2011

    Article  Google Scholar 

  • Hu A, Meehl GA, Han W, Timmermann A, Otto-Bliesner B, Liu Z, Washington WM, Large W, Abe-Ouchi A, Kimoto M et al (2012) Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability. Proc Nat Acad Sci 109(17):6417–6422. doi:10.1073/pnas.1116014109

    Article  Google Scholar 

  • Huisman SE, Den Toom M, Dijkstra HA, Drijfhout S (2010) An indicator of the multiple equilibria regime of the Atlantic meridional overturning circulation. J Phys Oceanogr 40(3):551–567. doi:10.1175/2009JPO4215.1

    Article  Google Scholar 

  • Ingleby B, Huddleston M (2007) Quality control of ocean temperature and salinity profiles: historical and real-time data. J Mar Syst 65(1):158–175. doi:10.1016/j.jmarsys.2005.11.019

    Article  Google Scholar 

  • Jackson L (2013) Shutdown and recovery of the AMOC in a coupled global climate model: the role of the advective feedback. Geophys Res Lett 40(6):1182–1188. doi:10.1002/grl.50289

    Article  Google Scholar 

  • Jackson L, Kahana R, Graham T, Ringer M, Woollings T, Mecking J, Wood R (2015) Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Clim Dyn. doi:10.1007/s00382-015-2540-2

    Google Scholar 

  • Jochumsen K, Quadfasel D, Valdimarsson H, Jonsson S (2012) Variability of the Denmark Strait overflow: moored time series from 1996–2011. J Geophys Res Oceans (1978–2012), 117(C12). doi:10.1029/2012JC008244

  • Kanzow T, Cunningham S, Johns W, Hirschi JJ, Marotzke J, Baringer M, Meinen C, Chidichimo M, Atkinson C, Beal L et al (2010) Seasonal variability of the Atlantic meridional overturning circulation at 26.5 N. J Clim 23(21):5678–5698. doi:10.1175/2010JCLI3389.1

    Article  Google Scholar 

  • Krebs U, Timmermann A (2007) Tropical air–sea interactions accelerate the recovery of the Atlantic meridional overturning circulation after a major shutdown. J Clim 20(19):4940–4956. doi:10.1175/JCLI4296.1

    Article  Google Scholar 

  • Liu W, Liu Z (2013) A diagnostic indicator of the stability of the Atlantic meridional overturning circulation in CCSM3. J Clim 26(6):1926–1938. doi:10.1175/JCLI-D-11-00681.1

    Article  Google Scholar 

  • Liu W, Liu Z, Brady EC (2014) Why is the AMOC monostable in coupled general circulation models? J Clim 27(6):2427–2443. doi:10.1175/JCLI-D-13-00264.1

    Article  Google Scholar 

  • Madec G, NEMO team (2008) NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN No 1288-1619

  • Manabe S, Stouffer R (1988) Two stable equilibria of a coupled ocean–atmosphere model. J Clim 1(9):841–866. doi:10.1175/1520-0442(1988)001<0841:TSEOAC>2.0.CO;2

    Article  Google Scholar 

  • Marotzke J (1990) Instabilities and multiple equilibria of the thermohaline circulation. PhD thesis, Christian-Albrechts-Universität

  • McDonagh EL, King BA (2005) Oceanic fluxes in the South Atlantic. J Phys Oceanogr 35(1):109–122. doi:10.1175/JPO-2666.1

    Article  Google Scholar 

  • McDonagh EL, McLeod P, King BA, Bryden HL, Valdés ST (2010) Circulation, heat, and freshwater transport at 36 N in the Atlantic. J Phys Oceanogr 40(12):2661–2678. doi:10.1175/2010JPO4176.1

    Article  Google Scholar 

  • McDonagh EL, King BA, Bryden HL, Courtois P, Szuts Z, Baringer M, Cunningham S, Atkinson C, McCarthy G (2015) Continuous estimate of Atlantic oceanic freshwater flux at \(26.5^\circ {\rm N}\). J Clim 28(22):8888–8906. doi:10.1175/JCLI-D-14-00519.1

  • Megann A, Storkey D, Aksenov Y, Alderson S, Calvert D, Graham T, Hyder P, Siddorn J, Sinha B (2013) GO5. 0: the joint NERC-Met Office NEMO global ocean model for use in coupled and forced applications. Geosci Model Dev Discuss 6(4):5747–5799. doi:10.5194/gmdd-6-5747-2013

    Article  Google Scholar 

  • Peltier W, Vettoretti G, Stastna M (2006) Atlantic meridional overturning and climate response to Arctic Ocean freshening. Geophys Res Lett. doi:10.1029/2005GL025251

    Google Scholar 

  • Rae J, Hewitt H, Keen A, Ridley J, West A, Harris C, Hunke E, Walters D (2015) Development of Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled Model. Geosci Model Dev Discuss 8(3):2529–2554. doi:10.5194/gmdd-8-2529-2015

    Article  Google Scholar 

  • Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim Dyn 12(12):799–811. doi:10.1007/s003820050144

    Article  Google Scholar 

  • Saenko OA, Weaver AJ, Gregory JM (2003) On the link between the two modes of the ocean thermohaline circulation and the formation of global-scale water masses. J Clim 16(17):2797–2801. doi:10.1175/1520-0442(2003)016<2797:OTLBTT>2.0.CO;2

    Article  Google Scholar 

  • Scaife A, Arribas A, Blockley E, Brookshaw A, Clark R, Dunstone N, Eade R, Fereday D, Folland C, Gordon M et al (2014) Skillful long-range prediction of European and North American winters. Geophys Res Lett 41(7):2514–2519. doi:10.1002/2014GL059637

    Article  Google Scholar 

  • Scaife AA, Copsey D, Gordon C, Harris C, Hinton T, Keeley S, O’Neill A, Roberts M, Williams K (2011) Improved Atlantic winter blocking in a climate model. Geophys Res Lett. doi:10.1029/2011GL049573

    Google Scholar 

  • Sijp WP (2012) Characterising meridional overturning bistability using a minimal set of state variables. Clim Dyn 39(9–10):2127–2142. doi:10.1007/s00382-011-1249-0

    Article  Google Scholar 

  • Sijp WP, England MH, Gregory JM (2012) Precise calculations of the existence of multiple AMOC equilibria in coupled climate models. Part I: equilibrium states. J Clim 25(1):282–298. doi:10.1175/2011JCLI4245.1

    Article  Google Scholar 

  • Smeed D, McCarthy G, Cunningham S, Frajka-Williams E, Rayner D, Johns W, Meinen C, Baringer M, Moat B, Duchez A et al (2014) Observed decline of the Atlantic meridional overturning circulation 2004–2012. Ocean Sci 10(1):29–38. doi:10.5194/os-10-29-2014

    Article  Google Scholar 

  • Spence P, Saenko OA, Sijp W, England MH (2013) North Atlantic climate response to Lake Agassiz drainage at coarse and ocean eddy-permitting resolutions. J Clim 26(8):2651–2667. doi:10.1175/JCLI-D-11-00683.1

    Article  Google Scholar 

  • Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13(2):224–230

    Article  Google Scholar 

  • Stouffer RJ, Yin J, Gregory J, Dixon K, Spelman M, Hurlin W, Weaver A, Eby M, Flato G, Hasumi H et al (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19(8):1365–1387. doi:10.1175/JCLI3689.1

    Article  Google Scholar 

  • Swingedouw D, Rodehacke CB, Behrens E, Menary M, Olsen SM, Gao Y, Mikolajewicz U, Mignot J, Biastoch A (2013) Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble. Clim Dyn 41(3–4):695–720. doi:10.1007/s00382-012-1479-9

    Article  Google Scholar 

  • Tréguier AM, Theetten S, Chassignet EP, Penduff T, Smith R, Talley L, Beismann J, Böning C (2005) The North Atlantic subpolar gyre in four high-resolution models. J Phys Oceanogr 35(5):757–774. doi:10.1175/JPO2720.1

    Article  Google Scholar 

  • Tréguier AM, Deshayes J, Lique C, Dussin R, Molines JM (2012) Eddy contributions to the meridional transport of salt in the North Atlantic. J Geophys Res Oceans (1978–2012) 117(C5). doi:10.1029/2012JC007927

  • Valdes P (2011) Built for stability. Nat Geosci 4(7):414–416 doi:10.1038/ngeo1200

    Article  Google Scholar 

  • Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Change 54(3):251–267. doi:10.1023/A:1016168827653

    Article  Google Scholar 

  • Weijer W, Maltrud M, Hecht M, Dijkstra H, Kliphuis M (2012) Response of the Atlantic Ocean circulation to Greenland Ice Sheet melting in a strongly-eddying ocean model. Geophys Res Lett. doi:10.1029/2012GL051611

    Google Scholar 

  • Williams K, Harris C, Bodas-Salcedo A, Camp J, Comer R, Copsey D, Fereday D, Graham T, Hill R, Hinton T, Hyder P, Ineson S, Masato G, Milton S, Roberts M, Rowell D, Sanchez C, Shelly A, Sinha B, Walters D, West A, Woollings T, Xavier P (2015) The Met Office Global Coupled model 2.0 (GC2) configuration. Geosci Model Dev 8:1509–1524. doi:10.5194/gmd-8-1509-2015

    Article  Google Scholar 

  • Wunsch C (2002) What is the thermohaline circulation. Science 298(5596):1179–1181. doi:10.1126/science.1079329

    Article  Google Scholar 

  • Wunsch C (2006) Abrupt climate change: an alternative view. Quatern Res 65(2):191–203. doi:10.1016/j.yqres.2005.10.006

    Article  Google Scholar 

  • Yin J, Stouffer RJ (2007) Comparison of the stability of the Atlantic thermohaline circulation in two coupled atmosphere–ocean general circulation models. J Clim 20(17):4293–4315. doi:10.1175/JCLI4256.1

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge use of the MONSooN system, a collaborative facility supplied under the Joint Weather and Climate Research Programme, a strategic partnership between the UK Met Office and the Natural Environment Research Council. We would also like to thank Matt Mizlienski for helping setup the model as well as, Jeff Blundell and Adam Blaker for technical support. Finally we wish to thank two anonymous reviewers for their comments which improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Mecking.

Appendix: Freshwater budget calculation

Appendix: Freshwater budget calculation

The freshwater budget calculation used in this study is based on the method presented in Drijfhout et al. (2011) with modifications to include the effects of a northern and southern boundary, as well as specifics to the version of NEMO used (GO5, version 3.4 of NEMO) (Megann et al. 2013). Mean flow transports are based on 3 month means, while total transports (i.e. vS) are calculated online and are updated after each ocean model time step, which are later averaged over the years of interest removing the effects of the seasonal cycle on the budget. Following Drijfhout et al. (2011), the equation for the volume budget is as follows:

$$V_{t}=T_{S}-T_{N} -T_{Med}+PER-Res_{V},$$
(2)

where \(V_t\) is the rate of change of the volume, \(T_{(N/S)}\) are volume transports through the northern and southern boundaries, \(T_{Med}\) is the volume transport through the Strait of Gibraltar, PER is the precipitation minus evaporation plus runoffs and \(Res_V\) is the error generated by the choice of differencing scheme and temporal resolution of the data. The value of \(Res_V\) is computed as a residual to close the budget. Since the model has a free surface \(V_t\) is equivalent to the changes in the sea surface height using backwards differencing. The main differences between Eq. (2) and eqn. 4 in Drijfhout et al. (2011) are that we have left the choice of the northern and southern boundaries as arbitrary as opposed to choosing \(34^\circ {\text{S}}\) and the Bering Strait and we have included a term, \(T_{med}\) for the volume transports through the Strait of Gibraltar. In this configuration of NEMO the transports are computed without taking the changes in sea surface height into account. For the regions of interest used in this study the values of \(\hbox {Res}_V\) are relatively small resulting in O(\(10^{-4}\hbox { Sv}\)) for the North Atlantic subtropical gyre and O(\(10^{-5}\hbox { Sv}\)) for the North Atlantic subpolar gyre, which in both cases is the smallest term in the budget with the remaining terms ranging from O(\(10^{-3}\hbox { Sv}\)) to O(1 Sv). Choosing instantaneous values of sea surface height from the model restart files in the computation of \(V_t\) leads to \(Res_{V}\) having the same order as the precision in which the data is stored but, not all model restart files were available.

Similarly the salinity budget in terms of freshwater becomes the following:

$$M_{trend}-V_t=M_S-M_N-M_{Med}+M_{Mix}-Res_{V}+H,$$
(3)

where \(M_{trend}\) is the rate of change of freshwater in the region of interest, \(M_{(N/S)}\) are the northward/southward freshwater transports, \(M_{med}\) is the freshwater transport through the Strait of Gibraltar, H represents the freshwater hosing and \(M_{mix}\), computed as a residual, closes the budget capturing mixing and errors introduced by the temporal resolution of the data, as well as, the choice of reference salinity, \(S_{o}\). The conversion between salinity based terms to the freshwater based terms in Eq. (3) is done through multiplying all the terms in the equation by \({-1}/S_{o}\). Note that we have dropped the negative sign before \(M_{trend}\) in Eq. (3), contrary to Drijfhout et al. (2011) so that positive values indicate an increase in freshwater not salinity. In this case the hosing is included in the salinity budget and not the volume budget since it is computed as a redistribution of salinity in this model study. Combining Eqs. (2) and (3)gives the following expression for the fresh water budget:

$$\begin{aligned}M_{trend} &= (M_S+T_S )-(M_N+T_N)-(M_{Med}+T_{Med})\nonumber \\&\quad+M_{Mix}+PER+H.\end{aligned}$$
(4)

The \({\text{M}}_{(N/S)}\) terms can be divided into eddy and mean flow components since the ocean model output includes vS computed at every model time step. The eddy contribution to the freshwater transport is defined as follows:

$$\begin{aligned} M_{(eddy(N/S))}&= {} \frac{-1}{S_o}\int _{N/S}({\overline{vS}}-{\overline{v}}{\overline{S}})dA \nonumber \\&= {} M_{(N/S)}-M_{(mean(N/S))}, \end{aligned}$$
(5)
$$\Rightarrow {}M_{(N/S)}= M_{(mean(N/S))}+M_{(eddy(N/S))},$$
(6)

where the integral is taken over each zonal section of the Atlantic basin, \({\overline{vS}}\) is the total seasonal mean transport, \({\overline{v}}\) and \({\overline{S}}\) are the seasonal mean meridional velocity and salinity and \(M_{(mean(S/N))}=-1/S_o\int _{N/S}{\overline{v}}{\overline{S}}dA\) represents the non-eddy transports, with the overbar denoting a mean computed over 3 months. A map of the eddy kinetic energy (Fig. 10) shows that the eddy field in HadGEM3 is very similar to other models of similar resolution (Delworth et al. 2012), perhaps even slightly closer to what is expected from observations. The eddy contribution is computed in a very similar way to Tréguier et al. (2012), in which it was also shown that the eddy contribution will be even stronger at higher model resolutions. Since the current model resolution is eddy-permitting it is not possible to completely resolve eddies at all latitudes, therefore caution must be taken in interpreting the role of the eddies in the high latitudes. Similar to what is done in Drijfhout et al. (2011), \(M_{(mean(S/N))}\) can be divided into an overturning \(M_{(ov(S/N))}\), azonal \(M_{(az(S/N))}\) and the volume transport \(T_{(S/N)}\) terms as follows:

$$M_{mean(N/S)}= M_{ov(N/S)} +M_{az(N/S)} -T_{(N/S)},$$
(7)
$$M_{ov(N/S)}= \frac{-1}{S_o}\int _{N/S}v^*\langle {}S\rangle {}dA,$$
(8)
$$M_{az(N/S)}= \frac{-1}{S_o}\int _{N/S}v^\prime {}S^\prime {}dA,$$
(9)

where \(\langle {}f\rangle {}=\int {}fdx/\int {}x\) is the zonal mean, \(f^\prime =f-\langle {}f\rangle\) is the difference from the zonal mean, \({\hat{f}}=\int {}fdA/\int {}dA\) is the zonal section mean or barotropic component and \(f^*=\langle {}f\rangle {}-{\hat{f}}\) is the zonal mean baroclinic component for \(f={\overline{v}}\) or \(f={\overline{S}}\). Substituting Eqs. (6) and (7 8 9) into Eq. (4) gives the final form for the zonal freshwater budget equation:

$$M_{trend}={\varDelta }{}M_{ov}+{\varDelta }{}M_{az}+{\varDelta }{}M_{eddy}+{\varDelta }{}M_{Med}+M_{Mix}+PER+H,$$
(10)

where \({\varDelta }{}M_{ov}=M_{(ov(S))}-M_{(ov(N))}\), \({\varDelta }{}M_{az}=M_{(az(S))}-M_{az(N)}\), \({\varDelta }{}M_{eddy}=M_{(eddy(S))}-M_{(eddy(N))}\) and \({\varDelta }{}M_{Med}=-M_{Med}-T_{Med}\).

The are several possible valid choices of the reference salinity; the mean salinity over the entire volume of the region used in the budget calculation, the mean salinity over the section used as the northern (southern) boundary or the mean salinity from the Strait of Gibraltar. For this study it was chosen to use the mean salinity at the boundary between the North Atlantic subtropical and subpolar gyres for \(S_o\), the reference salinity. Choosing one of the other salinities as a reference salinity creates a maximum difference of O(10–4 Sv), which is less than 10 % of the smallest value represented in our budget analysis. To further simplify the budget analysis only times when there is no hosing being applied are considered and the freshwater transport through the Strait of Gibraltar is combined with the mixing term, resulting in the following final equation for the budget analysis:

$$M_{trend}={\varDelta }{}M_{ov}+{\varDelta }{}M_{az}+{\varDelta }{}M_{eddy}+M_{mix}+PER.$$
(11)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mecking, J.V., Drijfhout, S.S., Jackson, L.C. et al. Stable AMOC off state in an eddy-permitting coupled climate model. Clim Dyn 47, 2455–2470 (2016). https://doi.org/10.1007/s00382-016-2975-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-2975-0

Keywords

Navigation