Skip to main content

Advertisement

Log in

Interaction of the recent 50 year SST trend and La Niña 2010: amplification of the Southern Annular Mode and Australian springtime rainfall

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Australia experienced record high rainfall in austral spring 2010, which has previously been attributed to the concurrence of a strong La Niña event and a strong positive excursion of the Southern Annular Mode (SAM). In this study, we examine the role of the sea surface temperature (SST) trend over the recent 50 years, which has large warming over the tropical Indian, western Pacific and North Atlantic Oceans, in driving the extraordinary climate conditions of spring 2010, using the Australian Bureau of Meteorology coupled model seasonal forecast system. Four forecast sensitivity experiments were designed by using randomly chosen atmospheric initial conditions but with: (1) observed ocean initial conditions for 1 September 2010; (2) the same ocean initial conditions except the linear temperature trend over the period 1960–2010 was removed; (3) ocean initial conditions in which the trend was added to the climatological ocean state for 1 September; and (4) climatological ocean conditions only. A synergistic response to the La Niña SST anomalies and the SST trend was detected: the tropical rainfall anomalies were amplified over the western side of the Indo-Pacific warm-pool, which led to a significant increase of tropical upper tropospheric warming and a resultant increase of meridional temperature gradient in the Southern Hemisphere (SH) extratropics. Consequently, the SH eddy-driven jet was shifted poleward (i.e. positive phase of the SAM), which induced rainfall over subtropical Australia. Our findings highlight that the interaction of interannual anomalies and the trend may play an important role in the amplification of extreme events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Daily and monthly Australian rainfall data are available from 1900 (Jones et al. 2009).

  2. The linear trend of ocean temperature estimated at 00 UTC 1 September, which is displayed in Fig. 11, is similar to the linear trend obtained using September–November mean data of the BoM’s ocean reanalysis product as evidenced by the pattern correlation of the two SST trends being 0.8. A simple linear estimation of the temperature trend was adopted in this study, but other estimates of the ocean temperature trend have been used in studies with different purposes (e.g. Compo and Sardeshmukh 2010; Christidis et al. 2013a, b; Hope et al. 2015).

  3. NIÑO3.4 index = \(\overline{SSTa}_{{\left( {5^\circ {\text{S}} - 5^\circ {\text{N}},190 - 240^\circ {\text{E}}} \right)}}\), where SSTa indicates SST anomalies, and the overbar denotes area average.

  4. SAM indext = \(\mathop \sum \nolimits_{i}^{I} \mathop \sum \nolimits_{j}^{J}\varvec{\lambda}_{ij} MSLPa_{ijt}\), where λ denotes the 1st eigenvector of the Empirical Orthogonal Function (EOF) of MSLP anomalies over the domain of 25–75°S, 0–360°E for the period 1980–2009, which is displayed in Fig. 12. MSLPa indicates MSLP anomaly. i, j, and t denote longitude, latitude and time, respectively.

  5. At the sea surface, this inflated temperature trend is the sum of the pattern shown in Fig. 11 (the original trend used for DTR2010) and the pattern of Fig. 1c minus Fig. 5a (i.e. the forecast bias).

  6. \(- \frac{{\partial \left( {\overline{{\left[ {u^{{\prime }} v^{{\prime }} } \right]}} cos^{2} \varphi } \right)}}{{a cos^{2} \varphi *\partial \varphi }}\) on a spherical coordinate, where ϕ is latitude, a is the earth’s radius and u′, v′ are the departure of instantaneous u, v from their time means, respectively (Peixoto and Oort 1991; Seager et al. 2003). Square brackets and overbar denote zonal mean and time mean, respectively. To display eddy momentum flux convergence as a function of latitude and phase speed, we computed the space–time power spectrum by Fourier transforming daily u′, v′ relative to the September–November mean of 2010 at each latitude and then computed the meridional convergence from the space–time momentum flux cospectra at each latitude. We retained zonal wavenumbers 1–15 and smoothed in frequency with 10 passes of a 1–2–1 smoother.

References

  • Anyamba A, Small JL, Britch SC, Tucker CJ, Pak EW, Reynolds CA, Crutchfield J, Linthicum KJ (2014) Recent weather extremes and impacts on agricultural production and vector-borne disease outbreak patterns. PLoS ONE 9(3):e92538. doi:10.1371/journal.pone.0092538

    Article  Google Scholar 

  • Arblaster JM, Meehl GA, Karoly DJ (2011) Future climate change in the Southern Hemisphere: competing effects of ozone and greenhouse gases. Geophys Res Lett 38:L02701. doi:10.1029/2010GL045384

    Article  Google Scholar 

  • Arblaster JM, Lim E-P, Hendon HH, Trewin BC, Wheeler MC, Liu G, Braganza K (2014) Understanding Australia’s hottest September on record. Bull Am Meteorol Soc 95(9):S37–S41

    Google Scholar 

  • Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018

    Article  Google Scholar 

  • Butler AH, Thompson DWJ, Heikes R (2010) The steady-state atmospheric circulation response to climate change-like thermal forcings in a simple general circulation model. J Clim 23:3474–3496

    Article  Google Scholar 

  • Caballero R (2007) Role of eddies in the interannual variability of Hadley cell strength. Geophys Res Lett 34:L22705. doi:10.1029/2007GL030971

    Article  Google Scholar 

  • Cai W, Whetton PH, Karoly DJ (2003) The response of the Antarctic Oscillation to increasing and stabilized atmospheric CO2. J Clim 16:1525–1538

    Article  Google Scholar 

  • Cai W, Rensch PV, Cowan T, Hendon HH (2011) Teleconnection pathways for ENSO and the IOD and the mechanism for impacts on Australian rainfall. J Clim 24:3910–3923. doi:10.1175/2011JCLI4129.1

    Article  Google Scholar 

  • Chen G, Lu J, Frierson DMW (2008) Phase speed spectra and the latitude of surface westerlies: interannual variability and global warming trend. J Clim 21:5942–5959

    Article  Google Scholar 

  • Christidis N, Stott PA, Karoly DJ, Ciavarella A (2013a) An attribution study of the heavy rainfall over Eastern Australia in March 2012, edited by Peterson TC, Hoerling MP, Stott PA, Herring SC. Bull Am Meteorol Soc 94(9):S58–S61

    Google Scholar 

  • Christidis N, Stott PA, Scaife AA, Arribas A, Jones GS, Copsey D, Knight JR, Tennant WJ (2013b) A new HadGEM3-A-based system for attribution of weather- and climate-related extreme events. J Clim 26:2756–2783. doi:10.1175/JCLI-D-12-00169.1

    Article  Google Scholar 

  • Ciasto LM, Thompson DWJ (2008) Observations of large-scale ocean-atmosphere interaction in the Southern Hemisphere. J Clim 21:1244–1259

    Article  Google Scholar 

  • NCL cited 2014: NCAR command language, Version 6.2.1. UCAR/NCAR/CISL/VETS. doi:10.5065/D6WD3XH5

  • Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1029–1136. doi:10.1017/CBO9781107415324.024

  • Colman R, Deschamps L, Naughton M, Rikus L, Sulaiman A, Puri K, Roff G, Sun Z, Embery G (2005) BMRC atmospheric model (BAM) version 3.0: comparison with mean climatology. BMRC research report no. 108, Bureau of Meteorology Research Centre, 32 pp. http://www.bom.gov.au/bmrc/pubs/researchreports/researchreports.htm

  • Compo GP, Sardeshmukh PD (2010) Removing ENSO-related variations from the climate record. J Clim 23:1957–1978

    Article  Google Scholar 

  • Cottrill A, Hendon HH et al (2013) Seasonal forecasting in the Pacific using the coupled model POAMA-2. Weather Forecast 28:668–680

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Deser C, Phillips AS, Alexander MA (2010) Twentieth century tropical sea surface temperature trends revisited. Geophys Res Lett 37:L10701. doi:10.1029/2010GL043321

    Article  Google Scholar 

  • Deser C, Phillips Adam S, Tomas Robert A, Okumura Yuko M, Alexander Michael A, Capotondi Antonietta, Scott James D, Kwon Young-Oh, Ohba Masamichi (2012) ENSO and pacific decadal variability in the community climate system model version 4. J Clim 25:2622–2651

    Article  Google Scholar 

  • Drosdowsky W, Wheeler MC (2014) Predicting the onset of the north Australian wet season with the POAMA dynamical prediction system. Weather Forecast 29:150–161

    Article  Google Scholar 

  • England MH, McGregor S, Spence P, Meehl GA, Timmermann A, Cai W, Sen Gupta A, McPhaden MJ, Purich A, Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4:222–227

    Article  Google Scholar 

  • Evans JP, Boyer-Souchet I (2012) Local sea surface temperatures add to extreme precipitation in northeast Australia during La Niña. Geophys Res Lett 39:L10803. doi:10.1029/2012GL052014

    Google Scholar 

  • Fasullo JT, Boening C, Landerer FW, Nerem RS (2013) Australia’s unique influence on global sea level in 2010–2011. Geophys Res Lett 40:4368–4373. doi:10.1002/grl.50834

    Article  Google Scholar 

  • Fogt RL, Bromwich DH, Hines KM (2011) Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim Dyn 36:1555–1576

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Grainger S, Frederiksen CS, Zheng X (2013) Modes of interannual variability of Southern Hemisphere atmospheric circulation in CMIP3 models: assessment and projections. Clim Dyn 41:479–500. doi:10.1007/s00382-012-1659-7

    Article  Google Scholar 

  • Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change

  • Hendon HH, Thompson DWJ, Wheeler MC (2007) Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode. J Clim 20:2452–2467

    Article  Google Scholar 

  • Hendon HH, Lim E-P, Liu G (2012) The role of air-sea interaction for prediction of Australian summer monsoon rainfall. J Clim 25:1278–1290

    Article  Google Scholar 

  • Hendon HH, Lim E-P, Arblaster J, Anderson DTL (2014a) Causes and predictability of the record wet spring over Australia in 2010. Clim Dyn 42:1155–1174. doi:10.1007/s00382-013-1700-5

    Article  Google Scholar 

  • Hendon HH, Lim E-P, Ngyuen H (2014b) Variations of subtropical precipitation and circulation associated with the southern annular mode. J Clim 27:3446–3460

    Article  Google Scholar 

  • Hope P, Lim E-P, Wang G, Hendon HH, Arblaster JM (2015) Contributors to the record high temperatures across Australia in late spring 2014. Bull Am Meteorol Soc 96(12):S149–S153

    Article  Google Scholar 

  • Huang B, Banzon VF, Freeman E, Lawrimore J, Liu W, Peterson TC, Smith TM, Thorne PW, Woodruff SD, Zhang H-M (2015) Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J Clim 28:911–930

    Article  Google Scholar 

  • Hudson D, Alves O, Hendon HH, Wang G (2011) The impact of atmospheric initialisation on seasonal prediction of tropical Pacific SST. Clim Dyn 36:1155–1171

    Article  Google Scholar 

  • Hurrell JW, Hack JJ, Shea D, Caron JM, Rosinski J (2008) A new sea surface temperature and sea ice boundary data set for the community atmosphere model. J Clim 21:5145–5153. doi:10.1175/2008JCLI2292.1.1

    Article  Google Scholar 

  • Jones DA, Wang W, Fawcett R (2009) High-quality spatial climate data-sets for Australia. Aust Meteorol Oceanogr J 58:233–248

    Google Scholar 

  • Kang S, Polvani LM, Fyfe JC, Sigmond M (2011) Impact of polar ozone depletion on subtropical precipitation. Science 332:951–954

    Article  Google Scholar 

  • Kidston J, Frierson DMW, Renwick JA, Vallis GK (2010) Observations, simulations, and dynamics of jet stream variability and annular modes. J Clim 23:6186–6199

    Article  Google Scholar 

  • Knutson TR, Zeng F, Wittenberg AT (2013) Multimodel assessment of regional surface temperature trends: CMIP3 and CMIP5 twentieth-century simulations. J Clim 26:8709–8743

    Article  Google Scholar 

  • Kociuba G, Power SB (2015) Inability of CMIP5 models to simulate recent strengthening of the walker circulation: implications for projections. J Clim 28:20–35

    Article  Google Scholar 

  • Kosaka Y, Xie S-P (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407

    Article  Google Scholar 

  • Kumar A, Jha B, L’Heureux M (2010) Are tropical SST trends changing the global teleconnection during La Nina? Geophys Res Lett 37:L12702. doi:10.1029/2010GL043394

    Google Scholar 

  • L’Heureux ML, Thompson DWJ (2006) Observed relationships between the El Niño-Southern Oscillation and the extratropical zonal-mean circulation. J Clim 19:276–287

    Article  Google Scholar 

  • Langford S, Hendon HH (2013) Improving reliability of coupled model forecasts of Australian seasonal rainfall. Mon Weather Rev 141:728–741

    Article  Google Scholar 

  • Lewis SC, Karoly DJ (2015) 2015: Are estimates of anthropogenic and natural influences on Australia’s extreme 2010-2012 rainfall model-dependent? Clim Dyn 45:679–695. doi:10.1007/s00382-014-2283-5

    Article  Google Scholar 

  • Lim E-P, Hendon HH (2015a) Understanding and predicting the strong southern annular mode and its impact on the record wet east Australian spring. Clim Dyn 44:2807–2824

    Article  Google Scholar 

  • Lim E-P, Hendon HH (2015b) Understanding the contrast of Australian springtime rainfall of 1997 and 2002 in the frame of two flavors of El Nino. J Clim 28:2804–2822

    Article  Google Scholar 

  • Lim E-P, Simmonds I (2009) Effect of tropospheric temperature change on the zonal mean circulation and SH winter extratropical cyclones. Clim Dyn 33:19–32

    Article  Google Scholar 

  • Lim E-P, Hendon HH, Hudson D, Wang G, Alves O (2009) Dynamical forecast of inter-El Niño variations of tropical SST and Australian spring rainfall. Mon Weather Rev 137:3796–3810

    Article  Google Scholar 

  • Lim E-P, Hendon HH, Rashid H (2013) Seasonal predictability of the southern annular mode due to its association with ENSO. J Clim 26:8037–8054

    Article  Google Scholar 

  • Limpasuvan V, Hartmann DL (1999) Eddies and the annular modes of climate variability. Geophys Res Lett 26:3133–3136

    Article  Google Scholar 

  • Lorenz DJ, Hartmann DL (2001) Eddy-zonal flow feedback in the southern hemisphere. J Atmos Sci 58:3312–3327

    Article  Google Scholar 

  • Lu J, Chen G, Frierson DMW (2008) Response of the zonal mean atmospheric circulation to El Niño versus global warming. J Clim 21:5835–5851

    Article  Google Scholar 

  • Luo J-J, Wang G, Dommenget D (2015) Why did CMIP5 models fail to reproduce the recent La Nina-like climate shift? Technical report, ENSO workshop, University of New South Wales, Sydney, 4–6 Feb 2015

  • Lyon B, DeWitt DG (2012) A recent and abrupt decline in the East African long rains. Geophys Res Lett 39:L02702. doi:10.1029/2011GL050337

    Article  Google Scholar 

  • Manabe S, Holloway J (1975) The seasonal variation of the hydrological cycle as simulated by a global model of the atmosphere. J Geophys Res 80:1617–1649

    Article  Google Scholar 

  • Marshall AG, Hudson D, Wheeler M, Alves O, Hendon HH, Pook MJ, Risbey JS (2013) Intra-seasonal drivers of extreme heat over Australia in observations and POAMA-2. Clim Dyn. doi:10.1007/s00382-013-2016-1

    Google Scholar 

  • McBride JL, Nicholls N (1983) Seasonal relationships between Australian Rainfall and the Southern Oscillation. Mon Weather Rev 111:1998–2004

    Article  Google Scholar 

  • Meehl GA, Teng H, Arblaster JM (2014) Climate model simulations of the observed early 2000s hiatus of global warming. Nat Clim Change 4:898–902

    Article  Google Scholar 

  • Meneghini B, Simmonds I, Smith IN (2007) Association between Australian rainfall and the Southern Annular Mode. Int J Climatol 27:109–121

    Article  Google Scholar 

  • Meyers GA, McIntosh PC, Pigot L, Pook MJ (2007) The years of El Niño, La Niña and interactions with the tropical Indian Ocean. J Clim 20:2872–2880

    Article  Google Scholar 

  • Murphy BF, Pettre P, Simmonds I (2002) Effects of changing baroclinicity on the Southern Hemisphere extratropical circulation. Q J R Meteorol Soc 128:1807–1826

    Article  Google Scholar 

  • Nicholls N (2011) What caused the eastern Australia heavy rains and floods of 2010/11? Bull Aust Meteorol Oceanogr Soc 24:33–34

    Google Scholar 

  • Oke PR, Schiller A, Griffin DA, Brassington GB (2005) Ensemble data assimilation for an eddy-resolving ocean model of the Australian region. Q J R Meteorol Soc 131:3301–3311

    Article  Google Scholar 

  • Pacanowski RC (1996) MOM2. Documentation, user’s guide and reference manual. Technical report. GFDL Ocean Group technical report 3.2, 328 pp

  • Peixoto JP, Oort AH (1991) Physics of climate. American Institute of Physics, College Park, MD, 520 pp

  • Randel WJ, Held IM (1991) Phase speed spectra of transient eddy fluxes and critical layer absorption. J Atmos Sci 48:688–697

    Article  Google Scholar 

  • Rashid HA, Hirst AC (2015) Investigating the mechanisms of seasonal ENSO phase locking bias in the ACCESS coupled model. Clim Dyn. doi:10.1007/s00382-015-2633-y

    Google Scholar 

  • Rayner NA, Parker DE, Horton E, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Robinson WA (2006) On the self-maintenance of midlatitude jets. J Atmos Sci 63:2109–2122

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Sandeep S, Stordal F, Sardeshmukh PD, Compo GP (2014) Pacific Walker Circulation variability in coupled and uncoupled climate models. Clim Dyn 43:103–117

    Article  Google Scholar 

  • Santer BD et al (2005) Amplification of surface temperature trends and variability in the tropical atmosphere. Science 309:1551–1556

    Article  Google Scholar 

  • Schiller A, Godfrey JS, McIntosh PC, Meyers G, Smith NR, Alves O, Wang G, Fiedler R (2002) A new version of the australian community ocean model for seasonal climate prediction. CSIRO marine research report no. 240

  • Seager R, Harnik N, Kushnir Y (2003) Mechanisms of hemispherically symmetric climate variability. J Clim 16:2960–2978

    Article  Google Scholar 

  • Sen Gupta A, England MH (2007) Coupled ocean–atmosphere feedback in the southern annular mode. J Clim 20(3677–3692):2012. doi:10.1175/JCLI4200.1

    Google Scholar 

  • Shi L, Hendon HH, Alves O, Luo J-J, Balmaseda M, Anderson D (2012) How predictable is the Indian Ocean Dipole? Mon Weather Rev 140:3867–3884

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements NOAAs historical merged land-ocean temp analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Sobel AH, Held IM, Bretherton CS (2002) The ENSO signal in tropical tropospheric temperature. J Clim 15:2702–2706

    Article  Google Scholar 

  • Solomon A, Newman M (2012) Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record. Nat Clim Change 2:691–699

    Article  Google Scholar 

  • Stone PH, Carlson JH (1979) Atmospheric lapse rate regimes and their parameterization. J Atmos Sci 36:415–423

    Article  Google Scholar 

  • Su H, Neelin JD, Meyerson JE (2003) Sensitivity of tropical tropospheric temperature to sea surface temperature forcing. J Clim 16:1283–1301

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT (2012) Climate extremes and climate change: the Russian heat wave and other climate extremes of 2010. J Geophys Res 117:D17103. doi:10.1029/2012JD018020

    Article  Google Scholar 

  • Ummenhofer CC, Sen Gupta A, England MH (2015) How did ocean warming affect Australian rainfall extremes during the 2010/11 La Nina event? Geophys Res Lett 42:9942–9951. doi:10.1002/2015GL065948

    Article  Google Scholar 

  • Valke S, Terray L, Piacentini A (2000) The OASIS coupled user guide version 2.4. Technical report TR/CMGC/00-10, CERFACS

  • Vecchi GA, Clement A, Soden BJ (2008) Pacific signature of global warming: El Nino or La Nina? EOS Trans AGU. doi:10.1029/2008EO090002

    Google Scholar 

  • Wang G, Alves O, Smith N (2005) BAM3.0 tropical surface flux simulation and its impact on SST drift in a coupled model. BMRC research report 107, 30 pp

  • White CJ, Hudson D, Alves O (2013) ENSO, the IOD and the intraseasonal prediction of heat extremes across Australia using POAMA-2. Clim Dyn. doi:10.1007/s00382-013-2007-2

    Google Scholar 

  • Wilks DS (2005) Statistical methods in the atmospheric sciences. Academic Press, Cambridge

    Google Scholar 

  • Xie P, Arkin PA (1996) Analysis of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J Clim 9:840–858

    Article  Google Scholar 

  • Xie S-P, Deser Clara, Vecchi Gabriel A, Ma Jian, Teng Haiyan, Wittenberg Andrew T (2010) Global warming pattern formation: sea surface temperature and rainfall. J Clim 23:966–986

    Article  Google Scholar 

  • Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 3:L18701. doi:10.1029/2005GL023684

    Google Scholar 

  • Yin Y, Alves O, Oke P (2011) An ensemble ocean data assimilation system for seasonal prediction. Mon Weather Rev 139:786–808

    Article  Google Scholar 

  • Zhao M, Hendon H, Alves O, Yin Y, Anderson D (2013) Impact of salinity constraints on the simulated mean state and variability in a coupled seasonal forecast model. Mon Weather Rev 141:388–402

    Article  Google Scholar 

  • Zhao M, Hendon HH, Alves O, Liu G, Wang G (2015) Weakened El Niño predictability in the early 21st century. J Clim (submitted)

Download references

Acknowledgments

This study is supported by the Victorian Climate Initiative and the Australian Climate Change Science Program. Dr Julie Arblaster is partially supported by the Regional and Global Climate Modeling Program (RGCM) of the U.S. Department of Energy’s Office of Biological & Environmental Research (BER) Cooperative Agreement # DE-FC02-97ER62402. We are grateful to Dr Guo Liu for technical support to run the forecast experiments and to Drs Matthew Wheeler and Wasyl Drosdowsky and two anonymous reviewers for providing valuable comments on the manuscript. The NCAR Command Language (NCL 2014) was used for data analysis and visualization of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Pa Lim.

Appendix

Appendix

See Figs. 11 and 12.

Fig. 11
figure 11

The observed SST trend estimated from September 1st 00 UTC conditions over 1960–2010, using the ocean reanalysis set generated from PEODAS (Yin et al. 2011). This pattern has 0.65 correlation with the observed SON trend pattern shown in Fig. 1c over the low latitudes of 20°S–20°N and 0.51 correlation over the globe

Fig. 12
figure 12

ERA-Interim reanalysis monthly MSLP anomalies regressed onto the standardized time series of the 1st mode of the EOF analysis of monthly mean MSLP anomalies, which is used as the SAM index in this study. The EOF analysis was performed on the MSLP anomalies weighted by cosine latitude over the domain of 20–75°S in the period of 1980–2009. The pattern shows the positive phase of SAM (high SAM), and the explained variance of this mode is indicated in the top right corner of the figure (taken from Lim and Hendon 2015a, their Fig. 2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, EP., Hendon, H.H., Arblaster, J.M. et al. Interaction of the recent 50 year SST trend and La Niña 2010: amplification of the Southern Annular Mode and Australian springtime rainfall. Clim Dyn 47, 2273–2291 (2016). https://doi.org/10.1007/s00382-015-2963-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2963-9

Keywords

Navigation