Climate Dynamics

, Volume 47, Issue 7–8, pp 2273–2291 | Cite as

Interaction of the recent 50 year SST trend and La Niña 2010: amplification of the Southern Annular Mode and Australian springtime rainfall

  • Eun-Pa Lim
  • Harry H. Hendon
  • Julie M. Arblaster
  • Christine Chung
  • Aurel F. Moise
  • Pandora Hope
  • Griffith Young
  • Mei Zhao


Australia experienced record high rainfall in austral spring 2010, which has previously been attributed to the concurrence of a strong La Niña event and a strong positive excursion of the Southern Annular Mode (SAM). In this study, we examine the role of the sea surface temperature (SST) trend over the recent 50 years, which has large warming over the tropical Indian, western Pacific and North Atlantic Oceans, in driving the extraordinary climate conditions of spring 2010, using the Australian Bureau of Meteorology coupled model seasonal forecast system. Four forecast sensitivity experiments were designed by using randomly chosen atmospheric initial conditions but with: (1) observed ocean initial conditions for 1 September 2010; (2) the same ocean initial conditions except the linear temperature trend over the period 1960–2010 was removed; (3) ocean initial conditions in which the trend was added to the climatological ocean state for 1 September; and (4) climatological ocean conditions only. A synergistic response to the La Niña SST anomalies and the SST trend was detected: the tropical rainfall anomalies were amplified over the western side of the Indo-Pacific warm-pool, which led to a significant increase of tropical upper tropospheric warming and a resultant increase of meridional temperature gradient in the Southern Hemisphere (SH) extratropics. Consequently, the SH eddy-driven jet was shifted poleward (i.e. positive phase of the SAM), which induced rainfall over subtropical Australia. Our findings highlight that the interaction of interannual anomalies and the trend may play an important role in the amplification of extreme events.


SST trend La Niña 2010 Southern Annular Mode 2010 Australian rainfall extreme 2010 



This study is supported by the Victorian Climate Initiative and the Australian Climate Change Science Program. Dr Julie Arblaster is partially supported by the Regional and Global Climate Modeling Program (RGCM) of the U.S. Department of Energy’s Office of Biological & Environmental Research (BER) Cooperative Agreement # DE-FC02-97ER62402. We are grateful to Dr Guo Liu for technical support to run the forecast experiments and to Drs Matthew Wheeler and Wasyl Drosdowsky and two anonymous reviewers for providing valuable comments on the manuscript. The NCAR Command Language (NCL 2014) was used for data analysis and visualization of the results.


  1. Anyamba A, Small JL, Britch SC, Tucker CJ, Pak EW, Reynolds CA, Crutchfield J, Linthicum KJ (2014) Recent weather extremes and impacts on agricultural production and vector-borne disease outbreak patterns. PLoS ONE 9(3):e92538. doi: 10.1371/journal.pone.0092538 CrossRefGoogle Scholar
  2. Arblaster JM, Meehl GA, Karoly DJ (2011) Future climate change in the Southern Hemisphere: competing effects of ozone and greenhouse gases. Geophys Res Lett 38:L02701. doi: 10.1029/2010GL045384 CrossRefGoogle Scholar
  3. Arblaster JM, Lim E-P, Hendon HH, Trewin BC, Wheeler MC, Liu G, Braganza K (2014) Understanding Australia’s hottest September on record. Bull Am Meteorol Soc 95(9):S37–S41Google Scholar
  4. Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018CrossRefGoogle Scholar
  5. Butler AH, Thompson DWJ, Heikes R (2010) The steady-state atmospheric circulation response to climate change-like thermal forcings in a simple general circulation model. J Clim 23:3474–3496CrossRefGoogle Scholar
  6. Caballero R (2007) Role of eddies in the interannual variability of Hadley cell strength. Geophys Res Lett 34:L22705. doi: 10.1029/2007GL030971 CrossRefGoogle Scholar
  7. Cai W, Whetton PH, Karoly DJ (2003) The response of the Antarctic Oscillation to increasing and stabilized atmospheric CO2. J Clim 16:1525–1538CrossRefGoogle Scholar
  8. Cai W, Rensch PV, Cowan T, Hendon HH (2011) Teleconnection pathways for ENSO and the IOD and the mechanism for impacts on Australian rainfall. J Clim 24:3910–3923. doi: 10.1175/2011JCLI4129.1 CrossRefGoogle Scholar
  9. Chen G, Lu J, Frierson DMW (2008) Phase speed spectra and the latitude of surface westerlies: interannual variability and global warming trend. J Clim 21:5942–5959CrossRefGoogle Scholar
  10. Christidis N, Stott PA, Karoly DJ, Ciavarella A (2013a) An attribution study of the heavy rainfall over Eastern Australia in March 2012, edited by Peterson TC, Hoerling MP, Stott PA, Herring SC. Bull Am Meteorol Soc 94(9):S58–S61Google Scholar
  11. Christidis N, Stott PA, Scaife AA, Arribas A, Jones GS, Copsey D, Knight JR, Tennant WJ (2013b) A new HadGEM3-A-based system for attribution of weather- and climate-related extreme events. J Clim 26:2756–2783. doi: 10.1175/JCLI-D-12-00169.1 CrossRefGoogle Scholar
  12. Ciasto LM, Thompson DWJ (2008) Observations of large-scale ocean-atmosphere interaction in the Southern Hemisphere. J Clim 21:1244–1259CrossRefGoogle Scholar
  13. NCL cited 2014: NCAR command language, Version 6.2.1. UCAR/NCAR/CISL/VETS. doi: 10.5065/D6WD3XH5
  14. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1029–1136. doi: 10.1017/CBO9781107415324.024
  15. Colman R, Deschamps L, Naughton M, Rikus L, Sulaiman A, Puri K, Roff G, Sun Z, Embery G (2005) BMRC atmospheric model (BAM) version 3.0: comparison with mean climatology. BMRC research report no. 108, Bureau of Meteorology Research Centre, 32 pp.
  16. Compo GP, Sardeshmukh PD (2010) Removing ENSO-related variations from the climate record. J Clim 23:1957–1978CrossRefGoogle Scholar
  17. Cottrill A, Hendon HH et al (2013) Seasonal forecasting in the Pacific using the coupled model POAMA-2. Weather Forecast 28:668–680CrossRefGoogle Scholar
  18. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  19. Deser C, Phillips AS, Alexander MA (2010) Twentieth century tropical sea surface temperature trends revisited. Geophys Res Lett 37:L10701. doi: 10.1029/2010GL043321 CrossRefGoogle Scholar
  20. Deser C, Phillips Adam S, Tomas Robert A, Okumura Yuko M, Alexander Michael A, Capotondi Antonietta, Scott James D, Kwon Young-Oh, Ohba Masamichi (2012) ENSO and pacific decadal variability in the community climate system model version 4. J Clim 25:2622–2651CrossRefGoogle Scholar
  21. Drosdowsky W, Wheeler MC (2014) Predicting the onset of the north Australian wet season with the POAMA dynamical prediction system. Weather Forecast 29:150–161CrossRefGoogle Scholar
  22. England MH, McGregor S, Spence P, Meehl GA, Timmermann A, Cai W, Sen Gupta A, McPhaden MJ, Purich A, Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4:222–227CrossRefGoogle Scholar
  23. Evans JP, Boyer-Souchet I (2012) Local sea surface temperatures add to extreme precipitation in northeast Australia during La Niña. Geophys Res Lett 39:L10803. doi: 10.1029/2012GL052014 Google Scholar
  24. Fasullo JT, Boening C, Landerer FW, Nerem RS (2013) Australia’s unique influence on global sea level in 2010–2011. Geophys Res Lett 40:4368–4373. doi: 10.1002/grl.50834 CrossRefGoogle Scholar
  25. Fogt RL, Bromwich DH, Hines KM (2011) Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim Dyn 36:1555–1576CrossRefGoogle Scholar
  26. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462CrossRefGoogle Scholar
  27. Grainger S, Frederiksen CS, Zheng X (2013) Modes of interannual variability of Southern Hemisphere atmospheric circulation in CMIP3 models: assessment and projections. Clim Dyn 41:479–500. doi: 10.1007/s00382-012-1659-7 CrossRefGoogle Scholar
  28. Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate changeGoogle Scholar
  29. Hendon HH, Thompson DWJ, Wheeler MC (2007) Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode. J Clim 20:2452–2467CrossRefGoogle Scholar
  30. Hendon HH, Lim E-P, Liu G (2012) The role of air-sea interaction for prediction of Australian summer monsoon rainfall. J Clim 25:1278–1290CrossRefGoogle Scholar
  31. Hendon HH, Lim E-P, Arblaster J, Anderson DTL (2014a) Causes and predictability of the record wet spring over Australia in 2010. Clim Dyn 42:1155–1174. doi: 10.1007/s00382-013-1700-5 CrossRefGoogle Scholar
  32. Hendon HH, Lim E-P, Ngyuen H (2014b) Variations of subtropical precipitation and circulation associated with the southern annular mode. J Clim 27:3446–3460CrossRefGoogle Scholar
  33. Hope P, Lim E-P, Wang G, Hendon HH, Arblaster JM (2015) Contributors to the record high temperatures across Australia in late spring 2014. Bull Am Meteorol Soc 96(12):S149–S153CrossRefGoogle Scholar
  34. Huang B, Banzon VF, Freeman E, Lawrimore J, Liu W, Peterson TC, Smith TM, Thorne PW, Woodruff SD, Zhang H-M (2015) Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J Clim 28:911–930CrossRefGoogle Scholar
  35. Hudson D, Alves O, Hendon HH, Wang G (2011) The impact of atmospheric initialisation on seasonal prediction of tropical Pacific SST. Clim Dyn 36:1155–1171CrossRefGoogle Scholar
  36. Hurrell JW, Hack JJ, Shea D, Caron JM, Rosinski J (2008) A new sea surface temperature and sea ice boundary data set for the community atmosphere model. J Clim 21:5145–5153. doi: 10.1175/2008JCLI2292.1.1 CrossRefGoogle Scholar
  37. Jones DA, Wang W, Fawcett R (2009) High-quality spatial climate data-sets for Australia. Aust Meteorol Oceanogr J 58:233–248Google Scholar
  38. Kang S, Polvani LM, Fyfe JC, Sigmond M (2011) Impact of polar ozone depletion on subtropical precipitation. Science 332:951–954CrossRefGoogle Scholar
  39. Kidston J, Frierson DMW, Renwick JA, Vallis GK (2010) Observations, simulations, and dynamics of jet stream variability and annular modes. J Clim 23:6186–6199CrossRefGoogle Scholar
  40. Knutson TR, Zeng F, Wittenberg AT (2013) Multimodel assessment of regional surface temperature trends: CMIP3 and CMIP5 twentieth-century simulations. J Clim 26:8709–8743CrossRefGoogle Scholar
  41. Kociuba G, Power SB (2015) Inability of CMIP5 models to simulate recent strengthening of the walker circulation: implications for projections. J Clim 28:20–35CrossRefGoogle Scholar
  42. Kosaka Y, Xie S-P (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407CrossRefGoogle Scholar
  43. Kumar A, Jha B, L’Heureux M (2010) Are tropical SST trends changing the global teleconnection during La Nina? Geophys Res Lett 37:L12702. doi: 10.1029/2010GL043394 Google Scholar
  44. L’Heureux ML, Thompson DWJ (2006) Observed relationships between the El Niño-Southern Oscillation and the extratropical zonal-mean circulation. J Clim 19:276–287CrossRefGoogle Scholar
  45. Langford S, Hendon HH (2013) Improving reliability of coupled model forecasts of Australian seasonal rainfall. Mon Weather Rev 141:728–741CrossRefGoogle Scholar
  46. Lewis SC, Karoly DJ (2015) 2015: Are estimates of anthropogenic and natural influences on Australia’s extreme 2010-2012 rainfall model-dependent? Clim Dyn 45:679–695. doi: 10.1007/s00382-014-2283-5 CrossRefGoogle Scholar
  47. Lim E-P, Hendon HH (2015a) Understanding and predicting the strong southern annular mode and its impact on the record wet east Australian spring. Clim Dyn 44:2807–2824CrossRefGoogle Scholar
  48. Lim E-P, Hendon HH (2015b) Understanding the contrast of Australian springtime rainfall of 1997 and 2002 in the frame of two flavors of El Nino. J Clim 28:2804–2822CrossRefGoogle Scholar
  49. Lim E-P, Simmonds I (2009) Effect of tropospheric temperature change on the zonal mean circulation and SH winter extratropical cyclones. Clim Dyn 33:19–32CrossRefGoogle Scholar
  50. Lim E-P, Hendon HH, Hudson D, Wang G, Alves O (2009) Dynamical forecast of inter-El Niño variations of tropical SST and Australian spring rainfall. Mon Weather Rev 137:3796–3810CrossRefGoogle Scholar
  51. Lim E-P, Hendon HH, Rashid H (2013) Seasonal predictability of the southern annular mode due to its association with ENSO. J Clim 26:8037–8054CrossRefGoogle Scholar
  52. Limpasuvan V, Hartmann DL (1999) Eddies and the annular modes of climate variability. Geophys Res Lett 26:3133–3136CrossRefGoogle Scholar
  53. Lorenz DJ, Hartmann DL (2001) Eddy-zonal flow feedback in the southern hemisphere. J Atmos Sci 58:3312–3327CrossRefGoogle Scholar
  54. Lu J, Chen G, Frierson DMW (2008) Response of the zonal mean atmospheric circulation to El Niño versus global warming. J Clim 21:5835–5851CrossRefGoogle Scholar
  55. Luo J-J, Wang G, Dommenget D (2015) Why did CMIP5 models fail to reproduce the recent La Nina-like climate shift? Technical report, ENSO workshop, University of New South Wales, Sydney, 4–6 Feb 2015Google Scholar
  56. Lyon B, DeWitt DG (2012) A recent and abrupt decline in the East African long rains. Geophys Res Lett 39:L02702. doi: 10.1029/2011GL050337 CrossRefGoogle Scholar
  57. Manabe S, Holloway J (1975) The seasonal variation of the hydrological cycle as simulated by a global model of the atmosphere. J Geophys Res 80:1617–1649CrossRefGoogle Scholar
  58. Marshall AG, Hudson D, Wheeler M, Alves O, Hendon HH, Pook MJ, Risbey JS (2013) Intra-seasonal drivers of extreme heat over Australia in observations and POAMA-2. Clim Dyn. doi: 10.1007/s00382-013-2016-1 Google Scholar
  59. McBride JL, Nicholls N (1983) Seasonal relationships between Australian Rainfall and the Southern Oscillation. Mon Weather Rev 111:1998–2004CrossRefGoogle Scholar
  60. Meehl GA, Teng H, Arblaster JM (2014) Climate model simulations of the observed early 2000s hiatus of global warming. Nat Clim Change 4:898–902CrossRefGoogle Scholar
  61. Meneghini B, Simmonds I, Smith IN (2007) Association between Australian rainfall and the Southern Annular Mode. Int J Climatol 27:109–121CrossRefGoogle Scholar
  62. Meyers GA, McIntosh PC, Pigot L, Pook MJ (2007) The years of El Niño, La Niña and interactions with the tropical Indian Ocean. J Clim 20:2872–2880CrossRefGoogle Scholar
  63. Murphy BF, Pettre P, Simmonds I (2002) Effects of changing baroclinicity on the Southern Hemisphere extratropical circulation. Q J R Meteorol Soc 128:1807–1826CrossRefGoogle Scholar
  64. Nicholls N (2011) What caused the eastern Australia heavy rains and floods of 2010/11? Bull Aust Meteorol Oceanogr Soc 24:33–34Google Scholar
  65. Oke PR, Schiller A, Griffin DA, Brassington GB (2005) Ensemble data assimilation for an eddy-resolving ocean model of the Australian region. Q J R Meteorol Soc 131:3301–3311CrossRefGoogle Scholar
  66. Pacanowski RC (1996) MOM2. Documentation, user’s guide and reference manual. Technical report. GFDL Ocean Group technical report 3.2, 328 ppGoogle Scholar
  67. Peixoto JP, Oort AH (1991) Physics of climate. American Institute of Physics, College Park, MD, 520 ppGoogle Scholar
  68. Randel WJ, Held IM (1991) Phase speed spectra of transient eddy fluxes and critical layer absorption. J Atmos Sci 48:688–697CrossRefGoogle Scholar
  69. Rashid HA, Hirst AC (2015) Investigating the mechanisms of seasonal ENSO phase locking bias in the ACCESS coupled model. Clim Dyn. doi: 10.1007/s00382-015-2633-y Google Scholar
  70. Rayner NA, Parker DE, Horton E, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  71. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  72. Robinson WA (2006) On the self-maintenance of midlatitude jets. J Atmos Sci 63:2109–2122CrossRefGoogle Scholar
  73. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363Google Scholar
  74. Sandeep S, Stordal F, Sardeshmukh PD, Compo GP (2014) Pacific Walker Circulation variability in coupled and uncoupled climate models. Clim Dyn 43:103–117CrossRefGoogle Scholar
  75. Santer BD et al (2005) Amplification of surface temperature trends and variability in the tropical atmosphere. Science 309:1551–1556CrossRefGoogle Scholar
  76. Schiller A, Godfrey JS, McIntosh PC, Meyers G, Smith NR, Alves O, Wang G, Fiedler R (2002) A new version of the australian community ocean model for seasonal climate prediction. CSIRO marine research report no. 240Google Scholar
  77. Seager R, Harnik N, Kushnir Y (2003) Mechanisms of hemispherically symmetric climate variability. J Clim 16:2960–2978CrossRefGoogle Scholar
  78. Sen Gupta A, England MH (2007) Coupled ocean–atmosphere feedback in the southern annular mode. J Clim 20(3677–3692):2012. doi: 10.1175/JCLI4200.1 Google Scholar
  79. Shi L, Hendon HH, Alves O, Luo J-J, Balmaseda M, Anderson D (2012) How predictable is the Indian Ocean Dipole? Mon Weather Rev 140:3867–3884CrossRefGoogle Scholar
  80. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements NOAAs historical merged land-ocean temp analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  81. Sobel AH, Held IM, Bretherton CS (2002) The ENSO signal in tropical tropospheric temperature. J Clim 15:2702–2706CrossRefGoogle Scholar
  82. Solomon A, Newman M (2012) Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record. Nat Clim Change 2:691–699CrossRefGoogle Scholar
  83. Stone PH, Carlson JH (1979) Atmospheric lapse rate regimes and their parameterization. J Atmos Sci 36:415–423CrossRefGoogle Scholar
  84. Su H, Neelin JD, Meyerson JE (2003) Sensitivity of tropical tropospheric temperature to sea surface temperature forcing. J Clim 16:1283–1301CrossRefGoogle Scholar
  85. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016CrossRefGoogle Scholar
  86. Trenberth KE, Fasullo JT (2012) Climate extremes and climate change: the Russian heat wave and other climate extremes of 2010. J Geophys Res 117:D17103. doi: 10.1029/2012JD018020 CrossRefGoogle Scholar
  87. Ummenhofer CC, Sen Gupta A, England MH (2015) How did ocean warming affect Australian rainfall extremes during the 2010/11 La Nina event? Geophys Res Lett 42:9942–9951. doi: 10.1002/2015GL065948 CrossRefGoogle Scholar
  88. Valke S, Terray L, Piacentini A (2000) The OASIS coupled user guide version 2.4. Technical report TR/CMGC/00-10, CERFACSGoogle Scholar
  89. Vecchi GA, Clement A, Soden BJ (2008) Pacific signature of global warming: El Nino or La Nina? EOS Trans AGU. doi: 10.1029/2008EO090002 Google Scholar
  90. Wang G, Alves O, Smith N (2005) BAM3.0 tropical surface flux simulation and its impact on SST drift in a coupled model. BMRC research report 107, 30 ppGoogle Scholar
  91. White CJ, Hudson D, Alves O (2013) ENSO, the IOD and the intraseasonal prediction of heat extremes across Australia using POAMA-2. Clim Dyn. doi: 10.1007/s00382-013-2007-2 Google Scholar
  92. Wilks DS (2005) Statistical methods in the atmospheric sciences. Academic Press, CambridgeGoogle Scholar
  93. Xie P, Arkin PA (1996) Analysis of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J Clim 9:840–858CrossRefGoogle Scholar
  94. Xie S-P, Deser Clara, Vecchi Gabriel A, Ma Jian, Teng Haiyan, Wittenberg Andrew T (2010) Global warming pattern formation: sea surface temperature and rainfall. J Clim 23:966–986CrossRefGoogle Scholar
  95. Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 3:L18701. doi: 10.1029/2005GL023684 Google Scholar
  96. Yin Y, Alves O, Oke P (2011) An ensemble ocean data assimilation system for seasonal prediction. Mon Weather Rev 139:786–808CrossRefGoogle Scholar
  97. Zhao M, Hendon H, Alves O, Yin Y, Anderson D (2013) Impact of salinity constraints on the simulated mean state and variability in a coupled seasonal forecast model. Mon Weather Rev 141:388–402CrossRefGoogle Scholar
  98. Zhao M, Hendon HH, Alves O, Liu G, Wang G (2015) Weakened El Niño predictability in the early 21st century. J Clim (submitted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Eun-Pa Lim
    • 1
  • Harry H. Hendon
    • 1
  • Julie M. Arblaster
    • 1
    • 2
  • Christine Chung
    • 1
  • Aurel F. Moise
    • 1
  • Pandora Hope
    • 1
  • Griffith Young
    • 1
  • Mei Zhao
    • 1
  1. 1.Bureau of MeteorologyMelbourneAustralia
  2. 2.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations