Skip to main content

Advertisement

Log in

A study of quasi-millennial extratropical winter cyclone activity over the Southern Hemisphere

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The winter extratropical cyclone activity in the Southern Hemisphere during the last one thousand years within a global climate simulation was analyzed by tracking cyclones, and then clustering them into ten clusters consecutively for each hundred years. There is very strong year-to-year variability for Southern Hemispheric winter extratropical cyclone numbers and larger variations on centennial time scale, more so than for its Northern Hemispherical counterparts. However, no obvious trend can be found. The mean tracks of clusters over the Southern Indian Ocean and near New Zealand shift poleward from the eleventh to the twentieth century while the clusters in the central Southern Pacific shift equatorward. Storm track clusters with largest deepening rates are found over the Southwestern Indian Ocean. In the twentieth century, rapidly deepening cyclones appear more often while long lifespan cyclones appear less frequently. The winter storm activity in the Southern Hemisphere is closely related to the Antarctic Oscillation. The cyclone frequency over the Indian Ocean and South Pacific Ocean can be associated with the Indian Ocean Dipole and El Nino-Southern Oscillation respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abram NJ, Mulvaney R, Vimeux F, Phipps SJ et al (2014) Evolution of the Southern Annular Mode during the past millennium. Nat Clim Change 4:564–569

    Article  Google Scholar 

  • Alexandersson H, Schmith T, Iden K, Tuomenvirta H (1998) Longterm variations of the storm climate over NW Europe. Global Atmos Ocean Syst 6:97–120

    Google Scholar 

  • Ashok K, Nakamura H, Yamagata T (2007) Impacts of ENSO and Indian Ocean dipole events on the Southern Hemisphere storm-track activity during austral winter. J Clim 20(13):3147–3163

    Article  Google Scholar 

  • Bender FA-M, Ramanathan V, Tselioudis G (2012) Changes in extratropical storm track cloudiness 1983-2008: observation support for a poleward shift. Clim Dyn 38:2037–2053

    Article  Google Scholar 

  • Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543

    Article  Google Scholar 

  • Bengtsson L, Hodges KI, Keenlyside N (2009) Will extra-tropical storms intensify in a warmer climate? J Clim 22:2276–2301

    Article  Google Scholar 

  • Blender R, Fraedrich K, Lunkeit F (1997) Identification of cyclone-track regimes in the North Atlantic. Q J R Meteorol Soc 123:727–741

    Article  Google Scholar 

  • Busuioc A, von Storch H (1996) Changes in the winter precipitation in Romania and its relation to the large-scale circulation. Tellus A 48:538–552

    Article  Google Scholar 

  • Chambers FM, Brain SA, Mauquoy D, McCarroll J, Daley T (2014) The ‘Little Ice Age’ in the Southern Hemisphere in the context of the last 3000 years: peat-based proxy-climate date from Tierra del Fuego. Holocene 24:1649–1656

    Article  Google Scholar 

  • Chang EKM, Guo Y, Xia X (2012) CMIP5 multimodel ensemble projection of storm track change under global warming. J Geophys Res. doi:10.1029/2012JD018578

    Google Scholar 

  • Chen F, von Storch H, Zeng L, Du Y (2014) Polar low genesis over the North Pacific under different global warming scenarios. Clim Dyn 43(12):3449–3456

    Article  Google Scholar 

  • Chu P, Zhao X, Kim J (2010) Regional typhoon activity as revealed by track patterns and climate change. Hurricanes Clim Change 2:137–148

    Article  Google Scholar 

  • Dierckx P (1981) An algorithm for surface-fitting with spline functions. IMA J Numer Anal 1(3):267–283

    Article  Google Scholar 

  • Dierckx P (1984) Algorithms for smoothing data on the sphere with tensor product splines. Computing 32:319–342

    Article  Google Scholar 

  • Eichler TP, Gottschalck J (2013) A comparison of Southern Hemisphere cyclone track climatology and interannual variability in coarse-gridded reanalysis datasets. Adv Meteorol. doi:10.1155/2013/891260

    Google Scholar 

  • Elsner JB (2003) Tracking hurricanes. Bull Am Meteorol Soc 84:353–356

    Article  Google Scholar 

  • Fischer-Bruns I, von Storch H, González-Rouco JF, Zorita E (2005) Modelling the variablility of midlatitude storm activity on decadal to century time scales. Clim Dyn 25(5):461–476

    Article  Google Scholar 

  • González-Rouco F, von Storch H, Zorita E (2003) Deep soil temperature as proxy for surface air-temperature in a coupled model simulation of the last thousand years. Geophys Res Lett 30(21):L2116

    Article  Google Scholar 

  • Goodwin ID, Browning S, Lorrey AM, Mayewski PA et al (2014) A reconstruction of extratropical Indo-Pacific sea-level pressure patterns during the Medieval Climate Anomaly. Clim Dyn 43:1197–1219

    Google Scholar 

  • Gouirand I, Moron V, Zorita E (2007) Teleconnections between ENSO and North Atlantic in an ECHO-G simulation of the 1000–1990 period. Geophys Res Lett 34:L06705

    Article  Google Scholar 

  • Graff LS, Lacasce JH (2012) Changes in the extratropical storm tracks in response to changes in SST in an AGCM. J Clim 25:1854–1870

    Article  Google Scholar 

  • Grise KM, Son S-W, Correa GJP, Polvani LM (2014) The response of extratropical cyclones in the Southern Hemisphere to stratospheric ozone depletion in the 20th century. Atmos Sci Lett 15(1):29–36

    Article  Google Scholar 

  • Hodges KI (1994) A general method for tracking analysis and its application to meteorological data. Monthly Weather Rev 122:2573–2586

    Article  Google Scholar 

  • Hodges KI (1995) Feature tracking on the unit sphere. Monthly Weather Rev 123:3458–3465

    Article  Google Scholar 

  • Hodges KI (1999) Adaptive constraints for feature tracking. Monthly Weather Rev 127:1362–1373

    Article  Google Scholar 

  • Hoskins BJ, Hodges KI (2002) New perspectives on the Northern Hemisphere winter storm tracks. J Atmos Sci 59:1041–1061

    Article  Google Scholar 

  • Hoskins BJ, Hodges KI (2005) A new perspective on Southern Hemisphere storm tracks. J Clim 18(20):4108–4129

    Article  Google Scholar 

  • Jung T, Gulev SK, Rudeva I, Soloviov V (2006) Sensitivity of extratropical cyclone characteristic to horizontal resolution in ECMWF model. Q J R Meteorol Soc 132:1839–1857

    Article  Google Scholar 

  • Key JR, Chan AC (1999) Multidecadal global and regional trends in 1000 mb and 500 mb cyclone frequencies. Geophys Res Lett 26:2053–2056

    Article  Google Scholar 

  • Lim E, Simmonds I (2007) Southern Hemisphere winter extratropical cyclone characteristics and vertical organization observed with the ERA-40 data in 1979–2001. J Clim 20(11):2675–2690

    Article  Google Scholar 

  • Marsland SJ, Latif M, Legutke S (2003) Antarctic circumpolar modes in a coupled ocean–atmosphere model. Ocean Dyn 53(4):323–331

    Article  Google Scholar 

  • Matulla C, Schoener W, Alexandersson H, von Storch H, Wang XL (2008) European storminess: late nineteenth century to present. Clim Dyn 31:125–130

    Article  Google Scholar 

  • Meinardus W, Mecking L (1928) Das Beobachtungsmaterial der internationalen meteorologischen Kooperation und seine Verwertung nebst Erläuterungen zum meteorologischen Atlas. In: E.v. Drygalski (Hrsg.): Deutsche Südpolar-Expedition 1901–1903 im Auftrage des Reichsamtes des Innern. Verlag Georg Reimer, Berlin, Bd. III: Meteorologie Band I, 2. Hälfte, Heft, vol 1, pp 1–42

  • Mendes D, Souza EP, Marengo JA, Mendes MCD (2010) Climatology of extratropical cyclones over the South American-southern oceans sector. Theor Appl Climatol 100(3–4):239–250

    Article  Google Scholar 

  • Min S-K, Legutke S, Hense A, Kwon W-T (2005a) Internal variability in a 1000-yr control simulation with the coupled climate model ECHO-G. I: near-surface temperature, precipitation and mean sea level pressure. Tellus A 57:605–621

    Article  Google Scholar 

  • Min S-K, Legutke S, Hense A, Kwon W-T (2005b) Internal variability in a 1000-yr control simulation with the coupled climate model ECHO-G. II: El Niño Southern Oscillation and North Atlantic Oscillation. Tellus A 57:622–640

    Article  Google Scholar 

  • Murray RJ, Simmonds I (1991) A numerical scheme for tracking cyclone centres from digital data Part I: development and operation of the scheme. Aust Meteorol Mag 39:155–166

    Google Scholar 

  • Nakamura J, Lall U, Kushnir Y, Camargo SJ (2009) Classifying North Atlantic tropical cyclone tracks by mass moments. J Clim 15:5481–5494

    Article  Google Scholar 

  • Neukom R, Gergis J, Karoly DJ, Wanner H et al (2014) Inter-hemispheric temperature variability over the past millennium. Nat Clim Change. doi:10.1038/NCLIMATE2174

    Google Scholar 

  • Pezza AB, Simmonds I, Renwick JA (2007) Southern Hemisphere cyclones and anticyclones: recent trends and links with decadal variability in the Pacific Ocean. Int J Climatol 27:1403–1419

    Article  Google Scholar 

  • Pezza AB, Durrant T, Simmonds I, Smith I (2008) Southern Hemisphere synoptic behavior in extreme phases of SAM, ENSO, sea ice extent, and Southern Australia rainfall. J Clim 21(21):5566–5584

    Article  Google Scholar 

  • Raible CC, Blender R (2004) Northern Hemisphere Mid-latitude cyclone variability in different ocean representations. Clim Dyn 22:239–248

    Article  Google Scholar 

  • Rodgers KB, Friederichs P, Latif M (2004) Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J Clim 17:3761–3774

    Article  Google Scholar 

  • Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmopheric general circulation model ECHAM4: model description and simulation of present-day climate. Report No. 218, Max-Planck-Institut für Meteorologie, Bundesstr 55, Hamburg

  • Rosenthal Y, Linsley BK, Oppo DW (2013) Pacific Ocean heat content during the past 10,000 years. Science 342:617–621

    Article  Google Scholar 

  • Rudeva I, Gulev SK (2007) Climatology of cyclone size characteristic and their changes during the cyclone life cycle. Monthly Weather Rev 135:2568–2587

    Article  Google Scholar 

  • Serreze MC (1995) Climatological aspects of cyclone development and decay in the arctic. Atmosphere-Ocean 33(1):1–23

    Article  Google Scholar 

  • Sickmöller M, Blender R, Fraedrich K (2000) Observed winter cyclone tracks in the Northern Hemisphere in re-analysed ECMWF data. Q J R Meteorol Soc 126:591–620

    Article  Google Scholar 

  • Simmonds I, Keay K (2000a) Variability of Southern Hemisphere extratropical cyclone behavior, 1958–97. J Clim 13:550–561

    Article  Google Scholar 

  • Simmonds I, Keay K (2000b) Mean Southern Hemisphere extratropical cyclone behavior in the 40-year NCEP–NCAR reanalysis. J Clim 13:873–885

    Article  Google Scholar 

  • Simmonds I, Wu X (1993) Cyclone behavior response to changes in winter Southern Hemisphere sea-ice concentration. Q J R Meteorol Soc 119:1121–1148

    Article  Google Scholar 

  • Stendel M, Roeckner E (1998) Impacts of horizontal resolution on simulated climate statistics in ECHAM4. Report No. 253, MaxPlanck-Institut für Meteorologie, Bundesstr 55, Hamburg

  • Tan M, Shao X, Liu J, Cai B (2009) Comparative analysis between a proxy-based climate reconstruction and GCM-based simulation of temperature over the last millennium in China. J Quat Sci 24(5):547–551

    Article  Google Scholar 

  • Ulbrich U, Christoph M (1999) A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Clim Dyn 15:551–559

    Article  Google Scholar 

  • van Loon H, Taljaard JJ (1962) Cyclogenesis, cyclones and anticyclones in the Southern Hemisphere during the winter and spring of 1957. Notos 11:3–20

    Google Scholar 

  • van Loon H, Taljaard JJ (1963) Cyclogenesis, cyclones and anticyclones in the Southern Hemisphere during summer 1957–1958. Notos 12:37–50

    Google Scholar 

  • von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • von Storch J-S, Kharin V, Cubasch U, Hegerl G, Schriever D, von Storch H, Zorita E (1997) A description of a 1260-year control integration with the coupled ECHAM1/LSG general circulation model. J Clim 10:1525–1543

    Article  Google Scholar 

  • von Storch H, Zorita E, Dimitriev Y, González-Rouco F, Tett S (2004) Reconstructing past climate from noisy data. Science 306:679–682

    Article  Google Scholar 

  • Vowinckel E, van Loon H (1957) Das Klima des Antarktischen Ozeans. Arch Meteor Geophys Bioklim B8:75–102

    Article  Google Scholar 

  • Wang XLL, Swail VR, Zwiers FW (2004) Climatology and changes of extra-tropical storm tracks and cyclone activities as derived from two global reanalyses and the Canadian CGCM2 projections of future climate. In: Preprints of the eighth international workshop on wave forecast and hindcast, 14–19 November 2004, North Shore, Hawaii

  • Wang XLL, Swail VR, Zwiers FW (2006) Climatology and changes of extratropical cyclone activity: comparison of ERA40 with NCEP–NCAR reanalysis for 1958–2001. J Clim 19:3145–3166

    Article  Google Scholar 

  • Wernli H, Schwierz C (2006) Surface cyclones in the ERA-40 dataset (1958–2001). Part I: novel identification method and global climatology. J Atmos Sci 63:2486–2507

    Article  Google Scholar 

  • Wolff JO, Maier-Reimer E, Legutke S (1997) The Hamburg Ocean primitive equation model. Technical Report, No. 13, German Climate Computer Center (DKRZ), Hamburg

  • Xia L, Zahn M, Hodges KI, Feser F, von Storch H (2012) A comparison of two identification and tracking methods for polar lows. Tellus A 64:17196

    Article  Google Scholar 

  • Xia L, von Storch H, Feser F (2013) Quasi-stationarity of centennial Northern Hemisphere midlatitude winter storm tracks. Clim Dyn 41:901–916

    Article  Google Scholar 

  • Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of the 21st century climate. Geophys Res Lett. doi:10.1029/2005GL023684

    Google Scholar 

  • Zahn M, von Storch H (2008a) Tracking polar lows in CLM. Meteorol Z 17(4):445–453

    Article  Google Scholar 

  • Zahn M, von Storch H (2008b) A long-term climatology of North Atlantic polar lows. Geophys Res Lett 35:L22702

    Article  Google Scholar 

  • Zolina O, Gulev SK (2002) Improving the accuracy of mapping cyclone numbers and frequencies. Monthly Weather Rev 130:748–759

    Article  Google Scholar 

  • Zorita E, González-Rouco JF, von Storch H, Montávez JP, Valero F (2005) Natural and anthoropogenic model of surface temperature variations in the last thousand years. Geophys Res Lett 32:L08707

    Article  Google Scholar 

Download references

Acknowledgments

We thank Eduardo Zorita for providing the ECHO-G simulation data, his support with statistic routines, and helpful discussions. We appreciate Kevin I. Hodges’ help with his tracking algorithm which was used for our study. We also acknowledge the German Climate Computer Center (DKRZ) Hamburg for the provision of high performance computing platforms. This study is sponsored by Yunnan Applied Basic Research Project (Foundation No. 2014FD003). The authors appreciate two anonymous reviewers for their constructive and helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, L., von Storch, H., Feser, F. et al. A study of quasi-millennial extratropical winter cyclone activity over the Southern Hemisphere. Clim Dyn 47, 2121–2138 (2016). https://doi.org/10.1007/s00382-015-2954-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2954-x

Keywords

Navigation