Skip to main content
Log in

Attribution of variations in the quasi-biennial oscillation period from the duration of easterly and westerly phases

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study reports the main features of quasi-biennial oscillation (QBO) period variability at stratospheric levels from 70 to 10 hPa and its attribution from the duration variability of westerly and easterly phases using monthly mean zonal wind data from August 1956 to July 2013, archived by Free University of Berlin. A total of 24 QBO events have been distinguished based on the zonal wind field and wavelet analysis for it. The QBO period varies in phase at various stratospheric levels and shows no significant long-term trend but decadal to multi-decadal variability. The noted case-to-case variations in QBO period are due to variations in durations of the westerly and easterly phases at the same level. The highly coupled variability of the easterly duration in the upper levels above 30 hPa and westerly durations in the lower levels below, which manifests the stalling or accelerating of the descent rate of easterly wind regimes around 30 hPa, is found to be the dominant variability of the easterly and westerly durations at various stratospheric levels. Accordingly, the period of QBO in the lower levels below 40 hPa/upper levels above 20 hPa is determined by the westerly/easterly durations there in about 75 % of the 24 QBO events; and at 30 hPa, variations in the durations of both easterly and westerly phases contribute to the QBO period variability. On the contrary, in only 4 out of 24 QBO events, the variations of the westerly/easterly durations in the upper/lower levels are greater than the variations of the easterly/westerly durations in the upper/lower levels, making deterministic contributions to the QBO period variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baldwin MP, Gray LJ, Dunderton TJ, Hamilton K, Haynes PH, Randel WJ, Holton JR, Alexander MJ, Hirota I, Horinouchi T, Jones DBA, Kinnersley JS, Marquardt C, Sato K, Takahashi M (2001) The quasi-biennial oscillation. Rev Geophys 9(2):179–229

    Article  Google Scholar 

  • Burrage MD, Vincent RA, Mayr HG, Skinner WR, Arnold NF, Hays PB (1996) Long-term variability of the equatorial middle atmosphere zonal wind. J Geophys Res 101(D8):12847–12854

    Article  Google Scholar 

  • Cai M, Barton C, Shin CS, Chagnon JM (2014) The continuous mutual evolution of equatorial waves and the quasi-biennial oscillation of zonal flow in the equatorial stratosphere. J Atmos Sci 71:2878–2885

    Article  Google Scholar 

  • Calvo N, Giorgetta MA, Garcia-Herrera R, Manzini E (2009) Nonlinearity of the combined warm ENSO and QBO effects on the Northern Hemisphere polar vortex in MAECHAM5 simulations. J Geophys Res 114:D13109

    Article  Google Scholar 

  • Camp CD, Tung KK (2007) The influence of the solar cycle and QBO on the late-winter stratospheric polar vortex. J Atmos Sci 64(4):1267–1283

    Article  Google Scholar 

  • Cooley JW, Lewis PAW, Welch PD (1969) The fast fourier transform and its applications. IEEE Trans Edu 12(1):27–34

    Article  Google Scholar 

  • Dunkerton TJ (1983) Modification of stratospheric circulation by race constituent changes? J Geophys Res 88:10831–10836

    Article  Google Scholar 

  • Dunkerton TJ (1990) Annual variation of deseasonalized mean flow acceleration in the equatorial lower stratosphere. J Meteorol Soc Jpn 68:499–508

    Google Scholar 

  • Dunkerton TJ (1997) The role of gravity waves in the quasi- biennial oscillation. J Geophys Res 102(D22):26053–26076

    Article  Google Scholar 

  • Ebdon RA, Veryard RG (1961) Fluctuations in equatorial stratospheric winds. Nature 189:791–793

    Article  Google Scholar 

  • Ern M, Preusse P (2009) Quantification of the contribution of equatorial Kelvin waves to the QBO wind reversal in the stratosphere. Geophys Res Lett 36(21):272–277

    Article  Google Scholar 

  • Ern M, Ploeger F, Preusse P, Gille JC, Gray LJ, Kalisch S, Mlynczak MG, Russell JM, Riese M (2014) Interaction of gravity waves with the QBO: a satellite perspective. J Geophys Res Atmos 119(5):2329–2355

    Article  Google Scholar 

  • Fischer P, Tung KK (2008) A reexamination of the QBO period modulation by the solar cycle. J Geophys Res 113(D7):1829–1836

    Article  Google Scholar 

  • Flury T, Wu DL, Read WG (2013) Variability in the speed of the Brewer–Dobson circulation as observed by Aura/MLS. Atmos Chem Phys 13:4563–4575

    Article  Google Scholar 

  • Gabis I, Troshichev O (2006) Influence of solar UV irradiance on the quasi-biennial oscillation of zonal winds in the equatorial stratosphere. J Atmos Sol Terr Phys 68(17):1987–1999

    Article  Google Scholar 

  • Gray LJ, Pyle JA (1989) A two-dimensional model of the quasi-biennial oscillation in ozone. J Atmos Sci 46:203–220

    Article  Google Scholar 

  • Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, Matthes K, Cubasch U, Fleitmann D, Harrison G, Hood L, Luterbacher J, Meehl GA, Shindell D, van Geel B, White W (2010) Solar influences on climate. Rev Geophys 48:RG4001

    Article  Google Scholar 

  • Hamilton K, Wilson RJ, Hemler RS (1999) Middle atmosphere simulated with high vertical and horizontal resolution versions of a GCM: improvement in the cold pole bias and generation of a QBO-like oscillation in the tropics. J Atmos Sci 56(22):3829–3846

    Article  Google Scholar 

  • Hamilton K, Hertzog A, Vial F, Stenchikov G (2004) Longitudinal variation of the stratospheric quasi-biennial oscillation. J Atmos Sci 61(4):383–402

    Article  Google Scholar 

  • Holton JR, Lindzen RS (1972) An undated theory for the quasi-biennial cycle of the tropical stratosphere. J Atmos Sci 29(8):1076–1080

    Article  Google Scholar 

  • Holton JR, Haynes PH, McIntyre ME, Douglass AR, Rood RB, Pfister L (1995) Stratosphere-troposphere exchange. Rev Geophys 33:403–443

    Article  Google Scholar 

  • Hood LL, Soukharev BE (2003) Quasi-decadal variability of the tropical lower stratosphere: the role of extratropical wave forcing. J Atmos Sci 60(19):2389–2403

    Article  Google Scholar 

  • Horinouchi T, Yoden S (1998) Wave-mean flow interaction associated with a QBO-like oscillation simulated in a simplified GCM. J Atmos Sci 55(4):502–526

    Article  Google Scholar 

  • Huang B, Hu ZZ, Kinter JL, Wu Z, Kumar A (2012) Connection of stratospheric QBO with global atmospheric general circulation and tropical SST. Part I: methodology and composite life cycle. Clim Dyn 38(1–2):1–23

    Article  Google Scholar 

  • Kawatani Y, Sato K, Dunkerton TJ, Watanabe S, Miyahara S, Takahashi M (2010) The roles of equatorial trapped waves and internal inertia-gravity waves in driving the quasi-biennial oscillation. Part I: zonal mean wave forcing. J Atmos Sci 67(4):963–980

    Article  Google Scholar 

  • Kinnersley JS, Pawson S (1996) The descent rates of the shear zones of the equatorial QBO. J Atmos Sci 53(14):1937–1949

    Article  Google Scholar 

  • Labitzke K (1982) On the interannual variability of the middle stratosphere during the northern winters. Meteorol Soc Jpn 60:124–139

    Google Scholar 

  • Lindzen RS, Holton JR (1968) A theory of the quasi-biennial oscillation. Mon Wea Rev 25(6):1095–1107

    Google Scholar 

  • Marchand M, Keckhut P, Lefebvre S, Claud C, Cugnet D, Hauchecorne A, Lefèvre F, Lefebvre MP, Jumelet J, Lott F, Hourdin F, Thuillier G, Poulain V, Bossay S, Lemennais P, David C, Bekki S (2012) Dynamical amplification of the stratospheric solar response simulated with the Chemistry-Climate Model LMDz-Reprobus. J Atmos and Sol Terr Phy 75:147–160

    Article  Google Scholar 

  • Marquadt C (1997) Die tropische QBO und dnamische Prozesse in der Stratosphaere. Meteorolo Abh Ser A, vol 9, D. Reimer, Berlin

  • Maruyama T, Tsuneoka Y (1988) Anomalously short duration of the easterly wind phase of the QBO at 50 hPa in 1987 and its relationship to an El Nino event. J Meteor Soc Jpn 66(4):629–634

    Google Scholar 

  • McCormack JP (2003) The influence of the 11-year solar cycle on the quasi-biennial oscillation. Geophys Res Lett 30(22):211–227

    Article  Google Scholar 

  • Mengel JG, Mayr HG, Chan KL, Hines CO, Reddy CA, Arnold NF, Porter HS (1995) Equatorial oscillations in the middle atmosphere generated by small-scale gravity waves. Geophys Res Lett 22(22):3027–3030

    Article  Google Scholar 

  • Naujokat B (1986) An update of the observed quasi-biennial oscillation of the stratospheric winds over the tropics. J Atmos Sci 43(17):1873–1877

    Article  Google Scholar 

  • Niwano M, Yamazaki K, Shiotani M (2003) Seasonal and QBO variations of ascent rate in the tropical lower stratosphere as inferred from UARS HALOE trace gas data. J Geophys Res Atmos (1984–2012), 108:D24

  • Palmer MA, Gray LJ (2005) Modeling the atmospheric response to solar irradiance changes using a GCM with a realistic QBO. Geophys Res Lett 33(24):230–250

    Google Scholar 

  • Pascoe CL, Gray LJ, Crooks SA, Juckes MN, Baldwin MP (2005) The quasi-biennial oscillation: analysis using ERA-40 data. J Geophys Res 110:D08105

    Article  Google Scholar 

  • Plumb RA, Bell RC (1982) A model of the quasi-biennial oscillation on an equatorial beta-plane. Q J R Meteorol Soc 108(456):335–352

    Article  Google Scholar 

  • Plumb RA, McEwan AD (1978) The instability of a forced standing wave in viscous stratified fluid: a laboratory analogue of the quasi-biennial oscillation. Atmos Sci 35(10):1827–1839

    Article  Google Scholar 

  • Punge HJ, Konopka P, Giorgetta MA, Müller R (2009) Effects of the quasi-biennial oscillation on low-latitude transport in the stratosphere derived from trajectory calculations. J Geophys Res 114:D03102

    Article  Google Scholar 

  • Randel WJ, Garcia RR, Wu F (2002) Time-dependent upwelling in the tropical lower stratosphere estimated from the zonal-mean momentum budget. J Atmos Sci 59(13):2141–2152

    Article  Google Scholar 

  • Reed RJ, Campbell WJ, Rasmussen LA, Rogers RG (1961) Evidence of a downward propagating annual wind reversal in the equatorial stratosphere. Geophys Res 66(3):813–818

    Article  Google Scholar 

  • Ribera P, Peña-Ortiz C, Garcia-Herrera R, Gallego D, Gimeno L, Hernández E (2004) Detection of the secondary meridional circulation associated with the quasi-biennial oscillation. J Geophys Res 109:D18112

    Article  Google Scholar 

  • Salby M, Callaghan P (2000) Connection between the solar cycle and the QBO: the missing link. J Clim 13(14):328–338

    Article  Google Scholar 

  • Soukharev BE, Hood LL (2001) Possible solar modulation of the equatorial quasi-biennial oscillation: additional statistical evidence. J Geophys Res 106(D14):14855–14868

    Article  Google Scholar 

  • Takahashi M (1996) Simulation of the stratospheric quasi-biennial oscillation using a general circulation model. Geophys Res Lett 23(6):661–664

    Article  Google Scholar 

  • Takahashi M (1999) Simulation of the stratospheric quasi-biennial oscillation in a general circulation model. Geophys Res Lett 26(9):1307–1310

    Article  Google Scholar 

  • Takahashi M, Boville BA (1992) A three-dimensional simulation of the equatorial quasi-biennial oscillation. J Atmos Sci 49(12):1020–1035

    Article  Google Scholar 

  • Untch A (1998) Simulation of the quasi-biennial oscillation with the ECMWF model. In: Research activities in the atmospheric and oceanic modelling (WMO), pp 6.26–6.27

  • Veryard RG, Ebdon RA (1961) Fluctuations in tropical stratospheric winds. Meteorol Mag 90:125–143

    Google Scholar 

  • Wallace JM, Kousky VE (1968) Observational evidence of Kelvin waves in the tropical stratosphere. J Atmos Sci 25(5):900–907

    Article  Google Scholar 

  • Wang B (1992) The vertical structure and development of the ENSO anomaly mode during 1979–1989. J Atmos Sci 49(8):698–712

    Article  Google Scholar 

  • Wolter K, Timlin MS (1993) Monitoring ENSO in COADS with a seasonally adjusted principal component index. In: Proceeding of the 17th climate diagnostics workshop, pp 52–57

  • Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1(01):1–41

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the two anonymous reviewers for their constructive and insightful comments that greatly helped to improve the presentation. The authors also would like to thank Ming Cai for substantial contributions to the discussion and ideas in this study. M.-M. Yang was supported by the China Meteorological Administration Special Public Welfare Research Fund GYHY201406007; Y.-Y. Yu was funded under the National Science Foundation (AGS-1354834) and the National Science Foundation of China (Grant Nos. 41430533 and 41575041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueyue Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Yu, Y. Attribution of variations in the quasi-biennial oscillation period from the duration of easterly and westerly phases. Clim Dyn 47, 1943–1959 (2016). https://doi.org/10.1007/s00382-015-2943-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2943-0

Keywords

Navigation