Climate Dynamics

, Volume 47, Issue 5–6, pp 1807–1826 | Cite as

Control of shortwave radiation parameterization on tropical climate SST-forced simulation

  • Julien Crétat
  • Sébastien Masson
  • Sarah Berthet
  • Guillaume Samson
  • Pascal Terray
  • Jimy Dudhia
  • Françoise Pinsard
  • Christophe Hourdin
Article

Abstract

SST-forced tropical-channel simulations are used to quantify the control of shortwave (SW) parameterization on the mean tropical climate compared to other major model settings (convection, boundary layer turbulence, vertical and horizontal resolutions), and to pinpoint the physical mechanisms whereby this control manifests. Analyses focus on the spatial distribution and magnitude of the net SW radiation budget at the surface (SWnet_SFC), latent heat fluxes, and rainfall at the annual timescale. The model skill and sensitivity to the tested settings are quantified relative to observations and using an ensemble approach. Persistent biases include overestimated SWnet_SFC and too intense hydrological cycle. However, model skill is mainly controlled by SW parameterization, especially the magnitude of SWnet_SFC and rainfall and both the spatial distribution and magnitude of latent heat fluxes over ocean. On the other hand, the spatial distribution of continental rainfall (SWnet_SFC) is mainly influenced by convection parameterization and horizontal resolution (boundary layer parameterization and orography). Physical understanding of the control of SW parameterization is addressed by analyzing the thermal structure of the atmosphere and conducting sensitivity experiments to O3 absorption and SW scattering coefficient. SW parameterization shapes the stability of the atmosphere in two different ways according to whether surface is coupled to atmosphere or not, while O3 absorption has minor effects in our simulations. Over SST-prescribed regions, increasing the amount of SW absorption warms the atmosphere only because surface temperatures are fixed, resulting in increased atmospheric stability. Over land–atmosphere coupled regions, increasing SW absorption warms both atmospheric and surface temperatures, leading to a shift towards a warmer state and a more intense hydrological cycle. This turns in reversal model behavior between land and sea points, with the SW scheme that simulates greatest SW absorption producing the most (less) intense hydrological cycle over land (sea) points. This demonstrates strong limitations for simulating land/sea contrasts in SST-forced simulations.

Keywords

Latent heat fluxes Physical parameterizations Radiative budget Rainfall Shortwave radiation schemes Tropical-channel simulations 

References

  1. Alapaty K, Herwehe JA, Otte TL, Nolte CG, Bullock OR, Mallard MS, Kain JS, Dudhia J (2012) Introducing subgrid-scale cloud feedbacks to radiation for regional meteorological and climate modeling. Geophys Res Lett 39:L24809. doi:10.1029/2012GL054031 CrossRefGoogle Scholar
  2. Betts AK, Miller MJ (1986) A new convective adjustment scheme. Part II: single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Q J R Meteorol Soc 112:693–709Google Scholar
  3. Chen F, Dudhia J (2001) Coupling an advanced land-surface/hydrology model with the Penn state/NCAR MM5 modeling system. Part I: model description and implementation. Mon Weather Rev 129:569–585CrossRefGoogle Scholar
  4. Chou MD, Suarez MJ (1999) A solar radiation parameterization for atmospheric studies. In: Technical report NASA/TM-1999-104606 vol 15. Technical report Series on Global Modeling and Data Assimilation NASAGoogle Scholar
  5. Crétat J, Macron C, Pohl B, Richard Y (2011) Quantifying internal variability in a regional climate model: a case study for Southern Africa. Clim Dyn 37:1335–1356CrossRefGoogle Scholar
  6. Crétat J, Pohl B, Richard Y, Drobinski P (2012) Uncertainties in simulating regional climate of Southern Africa: sensitivity to physical parameterizations using WRF. Clim Dyn 38:613–634CrossRefGoogle Scholar
  7. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRefGoogle Scholar
  8. Di Luca A, Flaounas E, Drobinski P, Lebeaupin Brossier C (2014) The atmospheric component of the Mediterranean Sea water budget in a WRF multi-physics ensemble and observations. Clim Dyn 43:2349–2375CrossRefGoogle Scholar
  9. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale twodimensional model. J Atmos Sci 46:3077–3107CrossRefGoogle Scholar
  10. Evan S, Alexander MJ, Dudhia J (2012) Model study of intermediate-scale tropical inertia-gravity waves and comparison to TWP-ICE campaign observations. J Atmos Sci 69:591–610CrossRefGoogle Scholar
  11. Evan S, Rosenlof KH, Dudhia J, Hassler B, Davis SM (2013) The representation of the TTL in a tropical channel version of the WRF model. J Geophys Res Atmos 118:2835–2848CrossRefGoogle Scholar
  12. Evans JP, Ekström M, Ji F (2012) Evaluating the performance of a WRF physics ensemble over south-east Australia. Clim Dyn 39:1241–1258CrossRefGoogle Scholar
  13. Flaounas E, Bastin S, Janicot S (2011) Regional climate modelling of the 2006 West African monsoon: sensitivity to convection and planetary boundary layer parameterisation using WRF. Clim Dyn 36:1083–1105CrossRefGoogle Scholar
  14. Hagos S, Leung R, Rauscher SA, Ringler T (2013) Error characteristics of two grid refinement approaches in aquaplanet simulations: MPAS-A and WRF. Mon Weather Rev 141:3022–3036CrossRefGoogle Scholar
  15. Hong SY, Lim JOJ (2006) The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteorol Soc 42:129–151Google Scholar
  16. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341CrossRefGoogle Scholar
  17. Hourdin F, Grandpeix JY, Rio C, Bony S, Jam A, Cheruy F, Rochetin N, Fairhead L, Idelkadi A, Musat I, Dufresne JL, Lahellec A, Lefebvre MP, Roehrig R (2013) LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Clim Dyn 40:2193–2222CrossRefGoogle Scholar
  18. Huffman GJ, Bolvin DT (2013) TRMM and other data precipitation data set documentation. ftp://rsd.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf
  19. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis: quasi-global, multi-year, combined sensor precipitation estimates at fine scale. J Hydrometeorol 8:38–55CrossRefGoogle Scholar
  20. Janjic ZI (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945CrossRefGoogle Scholar
  21. Janjic ZI (2002) Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP meso model. NCEP office note N 437Google Scholar
  22. Joseph JH, Wiscombe WJ, Weinman JA (1976) The delta-Eddington approximation for radiative flux transfer. J Atmos Sci 33:2452–2459CrossRefGoogle Scholar
  23. Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181CrossRefGoogle Scholar
  24. Kala J, Andrys J, Lyons TJ, Foster IJ, Evans BJ (2015) Sensitivity of WRF to driving data and physics options on a seasonal time-scale for the southwest of Western Australia. Clim Dyn 44:633–659CrossRefGoogle Scholar
  25. Kothe S, Ahrens B (2010) On the radiation budget in regional climate simulations for West Africa. J Geophys Res. doi:10.1029/2010JD014331 Google Scholar
  26. Leduc M, Laprise R (2009) Regional climate model sensitivity to domain size. Clim Dyn 32:833–854CrossRefGoogle Scholar
  27. Li JLF, Waliser DE, Stephens G, Lee S, L’Ecuyer T, Kato S, Loeb N, Ma HY (2013) Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. J Geophys Res Atmos 118:8166–8184. doi:10.1002/jgrd.50378 CrossRefGoogle Scholar
  28. Li JLF, Lee WL, Waliser DE, Neelin JD, Stachnik JP, Lee T (2014) Cloud-precipitation-radiation-dynamics interaction in global climate models: a snow and radiation interaction sensitivity experiment. J Geophys Res Atmos. doi:10.1002/2013JD021038 Google Scholar
  29. Li R, Jin J, Wang SY, Gillies RR (2015) Significant impacts of radiation physics in the Weather Research and Forecasting model on the precipitation and dynamics of the West African monsoon. Clim Dyn 44:1583–1594CrossRefGoogle Scholar
  30. Lim YK, Schubert SD, Reale O, Lee MI, Molod AM, Suarez MJ (2015) Sensitivity of tropical cyclones to parameterized convection in the NASA GEOS-5 model. J Clim 28:551–573CrossRefGoogle Scholar
  31. Lin JL (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean–atmosphere feedback analysis. J Clim 18:4497–4525CrossRefGoogle Scholar
  32. Loeb NG, Lyman JM, Johnson GC, Allan RP, Doelling DR, Wong T, Soden BJ, Stephens GL (2012) Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat Geosci. doi:10.1038/NGE Google Scholar
  33. Lucas-Picher P, Caya D, Biner S, Laprise R (2008) Quantification of the lateral boundary forcing of a regional climate model using an aging tracer. Mon Weather Rev 136:4980–4996CrossRefGoogle Scholar
  34. Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851–875CrossRefGoogle Scholar
  35. Mlawer E, Taubman S, Brown P, Iacono M, Clough S (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J Geophys Res 102:16663–16682CrossRefGoogle Scholar
  36. Morcrette JJ, Barker HW, Cole JS, Iacono MJ, Pincus R (2008) Impact of a new radiation package, McRad, in the ECMWF Integrated Forecasting System. Mon Weather Rev 163:4773–4798CrossRefGoogle Scholar
  37. Nakanishi M, Niino H (2004) An improved Mellor–Yamada level-3 model with condensation physics: its design and verification. Bound Layer Meteorol 112:1–31CrossRefGoogle Scholar
  38. Oueslati B, Bellon G (2015) The double ITCZ bias in CMIP5 models: interaction between SST, large-scale circulation and precipitation. Clim Dyn 44:585–607CrossRefGoogle Scholar
  39. Pessacg NL, Solman SA, Samuelsson P, Sanchez E, Marengo J, Li L, Remedio ARC, da Rocha RP, Mourão C, Jacob D (2014) The surface radiation budget over South America in a set of regional climate models from the CLARIS-LPB project. Clim Dyn 43:1221–1239CrossRefGoogle Scholar
  40. Pohl B, Crétat J, Camberlin P (2011) Testing WRF capability in simulating the atmospheric water cycle over equatorial East Africa. Clim Dyn 37:1357–1379CrossRefGoogle Scholar
  41. Praveen Kumar B, Vialard J, Lengaigne M, Murty VSN, McPhaden MJ (2012) TropFlux: air–sea fluxes for the global tropical oceans—description and evaluation against observations. Clim Dyn 38:1521–1543CrossRefGoogle Scholar
  42. Raktham C, Bruyère C, Kreasuwun J, Done J, Thongbai C, Promnopas W (2015) Simulation sensitivities of the major weather regimes of the Southeast Asia region. Clim Dyn 44:1403–1417CrossRefGoogle Scholar
  43. Ray P, Zhang C, Moncrieff MW, Dudhia J, Caron JM, Leung LR, Bruyère C (2011) Role of the atmospheric mean state on the initiation of the Madden–Julian oscillation in a tropical channel model. Clim Dyn 36:161–184CrossRefGoogle Scholar
  44. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496CrossRefGoogle Scholar
  45. Samson G, Masson S, Lengaigne M, Keerthi MG, Vialard J, Pous S, Madec G, Jourdain NC, Jullien S, Menkes C, Marchesiello P (2014) The NOW regional coupled model: application to the tropical Indian Ocean climate and tropical cyclone activity. J Adv Model Earth Syst 6:700–722CrossRefGoogle Scholar
  46. Skamarock W, Klemp JB, Dudhia J, Gill D, Barker D, Duda M, Huang X, Wang W, Powers J (2008) A description of the advanced research WRF version 3. NCAR technical note NCAR/TN-475 + STR. doi:10.5065/D68S4MVH. http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf
  47. Ulate M, Zhang C, Dudhia J (2015) Role of water vapor and convection-circulation decoupling in MJO simulations by a tropical channel model. J Adv Model Earth Syst. doi:10.1002/2014MS000393 Google Scholar
  48. Wang H, Su W (2013) Evaluating and understanding top of the atmosphere cloud radiative effects in Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) Coupled Model Intercomparison Project Phase 5 (CMIP5) models using satellite observations. J Geophys Res Atmos 118:683–699CrossRefGoogle Scholar
  49. Wehner MF, Reed KA, Li F, Prabhat Bacmeister J, Chen CT, Paciorek C, Gleckler PJ, Sperber KR, Collins WD, Gettelman A, Jablonowski C (2014) The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J Adv Model Earth Syst 6:980–997CrossRefGoogle Scholar
  50. Wild M, Liepert B (2010) The Earth radiation balance as driver of the global hydrological cycle. Environ Res Lett. doi:10.1088/1748-9326/5/2/025003 Google Scholar
  51. Wild M, Folini D, Schär C, Loeb N, Dutton EG, König-Langlo G (2013) The global energy balance from a surface perspective. Clim Dyn 40:3107–3134CrossRefGoogle Scholar
  52. Wild M, Folini D, Hakuba MZ, Schär C, Seneviratne SI, Kato S, Rutan D, Ammann C, Wood EF, König-Langlo G (2015) The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Clim Dyn 44:3393–3429CrossRefGoogle Scholar
  53. Wood R (2012) Stratocumulus clouds. Mon Weather Rev 140:2373–2423CrossRefGoogle Scholar
  54. Xu J, Small EE (2002) Simulating summertime rainfall variability in the North American monsoon region: the influence of convection and radiation parameterizations. J Geophys Res. doi:10.1029/2001JD002047 Google Scholar
  55. Yu L, Jin X, Weller RA (2008) Multidecade global flux datasets from the Objectively Analyzed Air–sea Fluxes (OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Technical Report. OA-2008-01, Woods Hole, MAGoogle Scholar
  56. Yuan X, Liang XZ, Wood E (2012) WRF ensemble downscaling seasonal forecasts of China winter precipitation during 1982–2008. Clim Dyn 39:2041–2058CrossRefGoogle Scholar
  57. Zamora RJ, Dutton EG, Trainer M, McKeen SA, Wilczak JM, Hou YT (2005) The accuracy of solar irradiance calculations used in mesoscale numerical weather prediction. Mon Weather Rev 133:783–792CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Julien Crétat
    • 1
  • Sébastien Masson
    • 1
  • Sarah Berthet
    • 1
    • 2
  • Guillaume Samson
    • 1
    • 2
  • Pascal Terray
    • 1
    • 3
  • Jimy Dudhia
    • 4
  • Françoise Pinsard
    • 1
  • Christophe Hourdin
    • 1
  1. 1.LOCEAN LaboratorySorbonne Universités (UPMC, Univ Paris 06)-CNRS-IRD-MNHN, IPSLParisFrance
  2. 2.UMR5566 CNRS-CNES-IRD-UPSLEGOSToulouseFrance
  3. 3.Indo-French Cell for Water Sciences, IISc-NIO-IITM–IRD Joint International LaboratoryIITMPuneIndia
  4. 4.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations