Skip to main content

Advertisement

Log in

Evaluating regional climate models for simulating sub-daily rainfall extremes

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Sub-daily rainfall extremes are of significant societal interest, with implications for flash flooding and the design of urban stormwater systems. It is increasingly recognised that extreme subdaily rainfall will intensify as a result of global temperature increases, with regional climate models (RCMs) representing one of the principal lines of evidence on the likely magnitude and spatiotemporal characteristics of these changes. To evaluate the ability of RCMs to simulate subdaily extremes, it is common to compare the simulated statistical characteristics of the extreme rainfall events with those from observational records. While such analyses are important, they provide insufficient insight into whether the RCM reproduces the correct underlying physical processes; in other words, whether the model “gets the right answers for the right reasons”. This paper develops a range of metrics to assess the performance of RCMs in capturing the physical mechanisms that produce extreme rainfall. These metrics include the diurnal and seasonal cycles, relationship between rainfall intensity and temperature, temporal scaling, and the spatial structure of extreme rainfall events. We evaluate a high resolution RCM—the Weather Research Forecasting model—over the Greater Sydney region, using three alternative parametrization schemes. The model shows consistency with the observations for most of the proposed metrics. Where differences exist, these are dependent on both the rainfall duration and model parameterization strategy. The use of physically meaningful performance metrics not only enhances the confidence in model simulations, but also provides better diagnostic power to assist with future model improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahern M, Kovats RS, Wilkinson P, Few R, Matthies F (2005) Global health impacts of floods: epidemiologic evidence. Epidemiol Rev 27:36–46

    Article  Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylha K, Koffi B, Palutikof JP, Scholl R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95. doi:10.1007/s10584-006-9226-z

    Article  Google Scholar 

  • Berg P, Moseley C, Haerter JO (2013) Strong increase in convective precipitation in response to higher temperatures. Nat Geosci. doi:10.1038/NGEO1731

    Google Scholar 

  • Buonomo E, Jones R, Huntingford C, Hannaford J (2007) On the robustness of changes in extreme precipitation over Europe from two high resolution climate change simulations. Q J R Meteorol Soc 133(622):65–81. doi:10.1002/qj.13

    Article  Google Scholar 

  • Castro L, Pielke A Sr, Adegoke J (2007) Investigation of the summer climate of the contiguous U.S. and Mexico using the regional atmospheric modeling system (RAMS). Part I: model climatology (1950–2002). J Clim 20:3866–3887. doi:10.1175/JCLI4211.1

    Article  Google Scholar 

  • Chen J, Brissette FP, Chaumont D, Braun M (2013) Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour Res 49(7):4187–4205

    Article  Google Scholar 

  • Dai A, Trenberth KE (2004) The diurnal cycle and its depiction in the community climate system model. J Clim 17:930–951

    Article  Google Scholar 

  • Delworth TL, Zeng F (2014) Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels. Nat Geosci 7(8):583–587. doi:10.1038/ngeo2201

    Article  Google Scholar 

  • Evans JP, McCabe MF (2010) Regional climate simulation over Australia’s Murray-Darling basin: a multitemporal assessment. J Geophys Res 115(D14):D14114. doi:10.1029/2010JD013816

    Article  Google Scholar 

  • Evans J, Westra S (2012) Investigating the mechanisms of diurnal rainfall variability using a regional climate model. J Clim 25(20):7232–7247

    Article  Google Scholar 

  • Evans J, Ekström M, Ji F (2012) Evaluating the performance of a WRF physics ensemble over South-East Australia. Clim Dyn 39(6):1241–1258. doi:10.1007/s00382-011-1244-5

    Article  Google Scholar 

  • Evans JP, Ji F, Abramowitz G, Ekström M (2013) Optimally choosing small ensemble members to produce robust climate simulations. Environ Res Lett 8:044050. doi:10.1088/1748-9326/8/4/044050

    Article  Google Scholar 

  • Evans JP, Ji F, Lee C et al (2014) Design of a regional climate modelling projection ensemble experiment—NARCliM. Geosci Model Dev 7:621–629. doi:10.5194/gmd-7-621-2014

    Article  Google Scholar 

  • Gilmore JB, Evans JP, Sherwood SC, Ekstrom M, Ji F (2015) Extreme precipitation in WRF for the Newcastle East Coast Low of 2007. Theor Appl Climatol. doi:10.1007/s00704-015-1551-6

    Google Scholar 

  • Hallegatte S, Green C, Nicholls RJ, Corfee-Morlot J (2013) Future flood losses in major coastal cities. Nat Clim Change 3(9):802–806. doi:10.1038/nclimate1979

    Article  Google Scholar 

  • Hardwick-Jones R, Westra S, Sharma A (2010) Observed relationships between extreme sub-daily precipitation, surface temperature and relative humidity. Geophys Res Lett. doi:10.1029/2010GL045081

    Google Scholar 

  • Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341

    Article  Google Scholar 

  • IPCC (2012) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge

  • Janjic Z (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945

    Article  Google Scholar 

  • Ji F, Ekström M, Evans JP, Teng J (2014) Evaluating rainfall patterns using physics scheme ensembles from a regional atmospheric model. Theor Appl Climatol 115:297–304. doi:10.1007/s00704-013-0904-2

    Article  Google Scholar 

  • Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Ristler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

    Article  Google Scholar 

  • Kendon EJ, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Senior CA (2014) Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat Clim Change 4(7):570–576. doi:10.1038/nclimate2258

    Article  Google Scholar 

  • Kirchner JW (2006) Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology. Water Resour Res. doi:10.1029/2005WR004362

    Google Scholar 

  • Langhans W, Schmidli J, Fuhrer O, Bieri S, Schar C (2013) Long-term simulations of thermally driven flows and orographic convection at convection-parameterizing and cloud-resolving resolutions. J Appl Meteorol Climatol 52:1490–1510

    Article  Google Scholar 

  • Lenderink G, van Meijgaard E (2008) Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat Geosci 1:511–514

    Article  Google Scholar 

  • Lovejoy S, Mandelbrot B (1985) Fractal properties of rain, and a fractal model. Tellus A 37(3):209–232

    Article  Google Scholar 

  • Mandapaka P, Qin X (2014) A large sample investigation of temporal scale-invariance in rainfall over the tropical urban island of Singapore. Theor Appl Climatol. doi:10.1007/s00704-014-1317-6

    Google Scholar 

  • Maraun D (2013) Bias correction, quantile mapping, and downscaling: revisiting the inflation issue. J Clim 26(6):2137–2143. doi:10.1175/JCLI-D-12-00821.1

    Article  Google Scholar 

  • Maraun D, Osborn T, Rust H (2011) The influence of synoptic airflow on UK daily precipitation extremes. Part I: observed spatio-temporal relationships. Clim Dyn 36(1–2):261–275. doi:10.1007/s00382-009-0710-9

    Article  Google Scholar 

  • Mascaro G, Vivoni ER, Gochis DJ, Watts CJ, Rodriguez JC (2014) Temporal downscaling and statistical analysis of rainfall across a topographic transect in Northwest Mexico. J Appl Meteorol Climatol 53(4):910–927. doi:10.1175/JAMC-D-13-0330.1

    Article  Google Scholar 

  • Nesbitt SW, Zipser EJ (2003) The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J Clim 16:1456–1475

    Article  Google Scholar 

  • Paschalis A, Molnar P, Fatichi S, Burlando P (2013) A stochastic model for high-resolution space-time precipitation simulation. Water Resour Res 49(12):8400–8417. doi:10.1002/2013WR014437

    Article  Google Scholar 

  • Rocheta E, Evans JP, Sharma A (2014) Assessing atmospheric bias correction for dynamical consistency using potential vorticity. Environ Res Lett 9(12):124010

    Article  Google Scholar 

  • Schindler A, Maraun D, Luterbacher J (2012) Validation of the present day annual cycle in heavy precipitation over the British Islands simulated by 14 RCMs. J Geophys Res Atmos 117(D18):D18107. doi:10.1029/2012JD017828

    Article  Google Scholar 

  • Schlather M, Tawn JA (2003) A dependence measure for multivariate and spatial extreme values: properties and inference. Biometrika 90(1):139–156. doi:10.1093/biomet/90.1.139

    Article  Google Scholar 

  • Skamarock W, Klemp J, Dudhia J et al (2008) A description of the advanced research WRF version 3. Mon Wea Rev 88:7–25

    Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217

    Article  Google Scholar 

  • Tripathi OP, Dominguez F (2013) Effects of spatial resolution in the simulation of daily and subdaily precipitation in the southwestern US. J Geophys Res Atmos 118(14):7591–7605

    Article  Google Scholar 

  • van Pelt SC, Beersma JJ, Buishand TA, van den Hurk BJJM, Kabat P (2012) Future changes in extreme precipitation in the Rhine basin based on global and regional climate model simulations. Hydrol Earth Syst Sci 16(12):4517–4530. doi:10.5194/hess-16-4517-2012

    Article  Google Scholar 

  • Veneziano D, Lepore C (2012) The scaling of temporal rainfall. Water Resour Res 48(8):W08516. doi:10.1029/2012wr012105

    Article  Google Scholar 

  • Wang J, Kotamarthi VR (2014) Downscaling with a nested regional climate model in near-surface fields over the contiguous United States. J Geophys Res Atmos. doi:10.1002/2014JD021696

    Google Scholar 

  • Wang J, Swati FNU, Stein ML, Kotamarthi VR (2015) Model performance in spatiotemporal patterns of precipitation: new methods for identifying value added by a regional climate model. J Geophys Res Atmos. doi:10.1002/2014JD022434

    Google Scholar 

  • Westra S, Alexander LV, Zwiers FW (2013a) Global increasing trends in annual maximum daily precipitation. J Clim 26:3904–3918. doi:10.1175/JCLI-D-12-00502.1

    Article  Google Scholar 

  • Westra S, Evans JP, Mehrotra R, Sharma A (2013b) A conditional disaggregation algorithm for generating fine time-scale rainfall data in a warmer climate. J Hydrol 479:86–99. doi:10.1016/j.jhydrol.2012.11.033

    Article  Google Scholar 

  • Westra S, Fowler HJ, Evans JP, Alexander LV, Berg P, Johnson F, Kendon EJ, Lenderink G, Roberts NM (2014) Future changes to the intensity and frequency of short-duration extreme rainfall. Rev Geophys. doi:10.1002/2014RG000464

    Google Scholar 

  • Zheng F, Westra S, Leonard M (2015a) Opposing local precipitation extremes. Nat Clim Change 5(5):389–390. doi:10.1038/nclimate2579

    Article  Google Scholar 

  • Zheng F, Thibaud E, Westra S, Leonard M (2015b) Assessing the performance of the independence method in modelling spatial extreme rainfall. Water Resour Res. doi:10.1002/2015WR016893

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feifei Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortés-Hernández, V.E., Zheng, F., Evans, J. et al. Evaluating regional climate models for simulating sub-daily rainfall extremes. Clim Dyn 47, 1613–1628 (2016). https://doi.org/10.1007/s00382-015-2923-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2923-4

Keywords

Navigation