Skip to main content

Projected response of East Asian summer monsoon system to future reductions in emissions of anthropogenic aerosols and their precursors

Abstract

The response of the East Asian summer monsoon (EASM) system to reductions in emissions of anthropogenic aerosols and their precursors at the end of the twenty-first century projected by Representative Concentration Pathway 4.5 is studied using an aerosol-climate model with aerosol direct, semi-direct, and indirect effects included. Our results show that the global annual mean aerosol effective radiative forcing at the top of the atmosphere (TOA) is +1.45 W m−2 from 2000 to 2100. The summer mean net all-sky shortwave fluxes averaged over the East Asian monsoon region (EAMR) at the TOA and surface increased by +3.9 and +4.0 W m−2, respectively, due to the reductions of aerosols in 2100 relative to 2000. Changes in radiations affect local thermodynamic and dynamic processes and the hydrological cycle. The summer mean surface temperature and pressure averaged over the EAMR are shown to increase by 1.7 K and decreased by 0.3 hPa, respectively, due to the reduced aerosols. The magnitudes of these changes are larger over land than ocean, causing a marked increase in the contrast of land-sea surface temperature and pressure in the EAMR, thus strengthening the EASM. The summer mean southwest and south winds at 850 hPa are enhanced over eastern and southern China and the surrounding oceans, and the East Asian subtropical jet shifted northward due to the decreases of aerosols. These factors also indicate enhanced EASM circulation, which in turn causes a 10 % increase in summer mean precipitation averaged over the EAMR.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Abdul-Razzak H, Ghan SJ (2000) A parameterization of aerosol activation 2. Multiple aerosol types. J Geophys Res 105:6837–6844. doi:10.1029/1999JD901161

    Article  Google Scholar 

  2. Albrecht B (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245(4923):1227–1230. doi:10.1126/science.245.4923.1227

    Article  Google Scholar 

  3. Bellouin N, Rae J, Jones A, Johnson C, Haywood J, Boucher O (2011) Aerosol forcing in the climate model intercomparison project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate. J Geophys Res. doi:10.1029/2011JD016074

    Google Scholar 

  4. Bollasina M, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 28:502–505. doi:10.1126/science.1204994

    Article  Google Scholar 

  5. Bond TC, Bergstrom RW (2006) Light absorption by carbonaceous particles: an investigative review. Aerosol Sci Tech 40:27–67. doi:10.1080/02786820500421521

    Article  Google Scholar 

  6. Booth BB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484:228–232. doi:10.1038/nature10946

    Article  Google Scholar 

  7. Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen VM, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh S, Sherwood S, Stevens B, Zhang X (2013) Clouds and aerosols. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, chapter 7. Cambridge Universtiy Press, Cambridge

    Google Scholar 

  8. d’Almeida GA, Koepke P, Shettle EP (1991) Atmospheric aerosols: global climatology and radiative characteristics. A Deepak Publishing, Virginia

    Google Scholar 

  9. Ding YH, Chan JCL (2005) The East Asian summer monsoon: an overview. Meteorol Atmos Phys 89:117–142. doi:10.1007/s00703-005-0125-z

    Article  Google Scholar 

  10. Ding YH, Wang ZY, Sun Y (2008) Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: observed evidences. Int J Climatol 28:1139–1161

    Article  Google Scholar 

  11. Ding YH, Liu YJ, Song YF, Zhang J (2015) From MONEX to the global monsoon: a review of monsoon system research. Adv Atmos Sci 32(1):10–31. doi:10.1007/s00376-014-0008-7

    Article  Google Scholar 

  12. Flanner MG, Liu X, Zhou C, Penner JE, Jiao C (2012) Enhanced solar energy absorption by internally-mixed black carbon in snow grains. Atmos Chem Phys 12:4699–4721. doi:10.5194/acp-12-4699-2012

    Article  Google Scholar 

  13. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate Change, chapter 2. Cambridge University Press, Cambridge

    Google Scholar 

  14. Ganguly D, Rasch PJ, Wang H, Yoon J-H (2012) Climate response of the South Asian monsoon system to anthropogenic aerosols. J Geophys Res. doi:10.1029/2012JD017508

    Google Scholar 

  15. Guo L, Highwood EJ, Shaffrey LC, Turner AG (2013) The effect of regional changes in anthropogenic aerosols on rainfall of the East Asian Summer Monsoon. Atmos Chem Phys 13:1521–1534. doi:10.5194/acp-13-1521-2013

    Article  Google Scholar 

  16. Hartmann DL, Tank AK, Rusticucci M, Alexander L, Brinnimann S, Charabi Y, Dentener F, Dlugokencky E, Easterling D, Kaplan A, Soden B, Thorne P, Wild M, Zhai P (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, chapter 2. Cambridge Universtiy Press, Cambridge

    Google Scholar 

  17. Haywood JM, Ramaswamy V (1998) Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols. J Geophys Res 103:6043–6058

    Article  Google Scholar 

  18. Hurrell JW, Hack JJ, Shea D, Caron JM, Rosinski J (2008) A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J Clim 21:5145–5153

    Article  Google Scholar 

  19. Ji ZM, Kang SC, Zhang DF, Zhu CZ, Wu J, Xu Y (2011) Simulation of the anthropogenic aerosols over South Asia and their effects on Indian summer monsoon. Clim Dyn 36(9–10):1633–1647. doi:10.1007/s00382-010-0982-0

    Article  Google Scholar 

  20. Jiang Y, Liu X, Yang X-Q, Wang M (2013) A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation. Atmos Environ 70:51–63. doi:10.1016/j.atmosenv.2012.12.039

    Article  Google Scholar 

  21. Kirkevåg A, Iversen T, Seland Ø, Debernard JB, Storelvmo T, Kristjansson JE (2008) Aerosol-cloud-climate interactions in the climate model CAM-Oslo. Tellus A 60:492–512

    Article  Google Scholar 

  22. Kloster S, Dentener F, Feichter J, Raes F, Lohmann U, Roeckner E, Fischer-Bruns I (2010) A GCM study of future climate response to aerosol pollution reductions. Clim Dyn 34:1177–1194. doi:10.1007/s00382-009-0573-0

    Article  Google Scholar 

  23. Koch D, Del Genio AD (2010) Black carbon semi-direct effects on cloud cover: review and synthesis. Atmos Chem Phys 10:7685–7696. doi:10.5194/acp-10-7685-2010

    Article  Google Scholar 

  24. Kristjansson JE, Iversen T, Kirkevag A, Seland Ø, Debernard J (2005) Response of the climate system to aerosol direct and indirect forcing: role of cloud feedbacks. J Geophys Res. doi:10.1029/2005JD006299

    Google Scholar 

  25. Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, Van Aardenne J, Cooper OR, Kainuma M, Mahowald N, McConnell JR, Naik V, Riahi K, van Vuuren DP (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10:7017–7039. doi:10.5194/acp-10-7017-2010

    Article  Google Scholar 

  26. Lei Y, Hoskins B, Slingo J (2011) Exploring the interplay between natural decadal variability and anthropogenic climate change in summer rainfall over china. Part I: observational evidence. J Clim 24:4584–4599

    Article  Google Scholar 

  27. Levy H II, Horowitz LW, Schwarzkopf MD, Ming Y, Golaz J-C, Naik V, Ramaswamy V (2013) The roles of aerosol direct and indirect effects in past and future climate change. J Geophys Res-Atmos 118:4521–4532. doi:10.1002/jgrd.50192

    Article  Google Scholar 

  28. Liu Y, Sun J, Yang B (2009) The effects of black carbon and sulfate aerosols in China regions on East Asia monsoons. Tellus B 61:642–656

    Article  Google Scholar 

  29. Liu X, Xie X, Yin Z, Liu C, Gettelman A (2011) A modeling study of the effects of aerosols on clouds and precipitation over East Asia. Theor Appl Climatol 106:343–354. doi:10.1007/s00704-011-0436-6

    Article  Google Scholar 

  30. Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque J-F, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Clim Change 109(1–2):213–241. doi:10.1007/s10584-011-0156

    Article  Google Scholar 

  31. Menon S, Hansen J, Nazarenko L, Luo YF (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253. doi:10.1126/science.1075159

    Article  Google Scholar 

  32. Ming Y, Ramaswamy V (2009) Nonlinear climate and hydrological responses to aerosol effects. J Clim 22:1329–1339

    Article  Google Scholar 

  33. Morrison H, Gettelman A (2008) A new two-moment bulk stratiform cloud microphysics scheme in the NCAR Community Atmosphere Model (CAM3), part I: description and numerical tests. J Clim 21(15):3642–3659

    Article  Google Scholar 

  34. Myhre G et al (2013) Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos Chem Phys 13:1853–1877. doi:10.5194/acp-13-1853-2013

    Article  Google Scholar 

  35. Pincus R, Barker HW, Morcrette J-J (2003) A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J Geophys Res. doi:10.1029/2002JD003322

    Google Scholar 

  36. Qian Y, Gong D, Fan J, Leung LR, Bennartz R, Chen D, Wang W (2009) Heavy pollution suppresses light rain in China: observations and modeling. J Geophys Res. doi:10.1029/2008JD011575

    Google Scholar 

  37. Rotstayn LD, Ryan BF, Penner JE (2000) Precipitation changes in a GCM resulting from the indirect effects of anthropogenic aerosols. Geophys Res Lett 27:3045–3048. doi:10.1029/2000GL011737

    Article  Google Scholar 

  38. Rotstayn LD, Collier MA, Chrastansky A, Jeffrey SJ, Luo J-J (2013) Projected effects of declining aerosols in RCP4.5: unmasking global warming? Atmos Chem Phys 13:10883–10905. doi:10.5194/acp-13-10883-2013

    Article  Google Scholar 

  39. Sampe T, Xie S-P (2010) Large-scale dynamics of the Meiyu-Baiu rain band: environmental forcing by the westerly jet. J Clim 23:113–134

    Article  Google Scholar 

  40. Song F, Zhou T, Qian Y (2014) Responses of East Asian summer monsoon to natural and anthropogenic forcing in the 17 latest CMIP5 models. Geophys Res Lett 41:596–603. doi:10.1002/2013GL058705

    Article  Google Scholar 

  41. Takemura T, Nozawa T, Emori S, Nakajima TY, Nakajima T (2005) Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J Geophys Res. doi:10.1029/2004JD005029

    Google Scholar 

  42. Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE, Edmonds JA (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Change 109:77–94. doi:10.1016/s10584-011-0151-4

    Article  Google Scholar 

  43. Twomey SA (1997) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152

    Article  Google Scholar 

  44. Wang ZL, Zhang H, Shen XS, Gong S, Zhang XY (2010) Modeling study of aerosol indirect effects on global climate with an AGCM. Adv Atmos Sci 27(5):1064–1077

    Article  Google Scholar 

  45. Wang ZL, Zhang H, Li J, Jing X, Lu P (2013) Radiative forcing and climate response due to the presence of black carbon in cloud droplets. J Geophys Res-Atmos 118:3662–3675. doi:10.1002/jgrd.50312

    Article  Google Scholar 

  46. Wang ZL, Zhang H, Lu P (2014) Improvement of cloud microphysics in the aerosol-climate model BCC_AGCM2.0.1_CUACE/Aero, evaluation against observations, and updated aerosol indirect effect. J Geophys Res-Atmos 119:8400–8417. doi:10.1002/2014JD021886

    Article  Google Scholar 

  47. Wang ZL, Zhang H, Zhang XY (2015) Simultaneous reductions in emissions of black carbon and co-emitted species will weaken the aerosol net cooling effect. Atmos Chem Phys 15:3671–3685. doi:10.5194/acp-15-3671-2015

    Article  Google Scholar 

  48. Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J R Meteorol Soc 118:877–926

    Article  Google Scholar 

  49. Wei XD, Zhang H (2011) Analysis of optical properties of nonspherical dust-like aerosols. Acta Optica Sinica 31(5):0501002-1–0501002-8

    Google Scholar 

  50. Wu TW, Yu RC, Zhang F, Wang ZZ, Dong M, Wang LN, Jin X, Chen DL, Li L (2010) The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day. Clim Dyn 34(1):123–147. doi:10.1007/s00382-008-0487-2

    Article  Google Scholar 

  51. Zhang H, Wang ZL, Guo PW, Wang ZZ (2009) A modeling study of the effects of direct radiative forcing due to carbonaceous aerosol on the climate in East Asia. Adv Atmos Sci 26:57–66

    Article  Google Scholar 

  52. Zhang H, Wang ZL, Wang ZZ, Liu Q, Gong S, Zhang XY, Shen Z, Lu P, Wei X, Che H, Li L (2012) Simulation of direct radiative forcing of typical aerosols and their effects on global climate using an online AGCM-aerosol coupled model system. Clim Dyn 38(7–8):1675–1693. doi:10.1007/s00382-011-1131-0

    Article  Google Scholar 

  53. Zhang H, Jing XW, Li J (2014) Application and evaluation of a new radiation code under McICA scheme in BCC_AGCM2.0.1. Geosci Model Dev 7:737–754. doi:10.5194/gmd-7-737-2014

    Article  Google Scholar 

  54. Zhang H, Wang ZL, Zhang F, Jing XW (2015) Impact of four-stream radiative transfer algorithm on aerosol direct radiative effect and forcing. Int J Climatol. doi:10.1002/joc.4289

    Google Scholar 

  55. Zhou CH, Gong S, Zhang X-Y, Liu HL, Xue M, Cao GL, An XQ, Che HZ, Zhang YM, Niu T (2012) Towards the improvements of simulating the chemical and optical properties of Chinese aerosols using an online coupled model-CUACE/Aero. Tellus B. doi:10.3402/tellusb.v64i0.18965

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2011CB403405), National Natural Science Foundation of China (41575139), and Public Meteorology Special Foundation of MOST (GYHY201406023).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhili Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, H. & Zhang, X. Projected response of East Asian summer monsoon system to future reductions in emissions of anthropogenic aerosols and their precursors. Clim Dyn 47, 1455–1468 (2016). https://doi.org/10.1007/s00382-015-2912-7

Download citation

Keywords

  • Aerosols
  • RCP4.5
  • East Asian summer monsoon
  • Projected response