Climate Dynamics

, Volume 47, Issue 3–4, pp 937–950 | Cite as

Changes in surface solar radiation in Northeastern Spain over the past six centuries recorded by tree-ring δ13C

  • I. Dorado-LiñánEmail author
  • A. Sanchez-Lorenzo
  • E. Gutiérrez Merino
  • O. Planells
  • I. Heinrich
  • G. Helle
  • E. Zorita


Although solar radiation at the surface plays a determinant role in carbon discrimination in tree rings, stable carbon isotope chronologies (δ13C) have often been interpreted as a temperature proxy due to the co-variability of temperature and surface solar radiation. Furthermore, even when surface solar radiation is assumed to be the main driver of 13C discrimination in tree rings, δ13C records have been calibrated against sunshine duration or cloud cover series for which longer observational records exists. In this study, we use different instrumental and satellite data over northeast Spain (southern Europe) to identify the main driver of tree-ring 13C discrimination in this region. Special attention is paid to periods in which the co-variability of those climate variables may have been weaker, such as years after large volcanic eruptions. The analysis identified surface solar radiation as the main driver of tree-ring δ13C changes in this region, although the influence of other climatic factors may not be negligible. Accordingly, we suggest that a reconstruction of SSR over the last 600 years is possible. The relation between multidecadal variations of an independent temperature reconstruction and surface solar radiation in this region shows no clear sign, and warmer (colder) periods may be accompanied by both higher and lower surface solar radiation. However, our reconstructed records of surface solar radiation reveals a sunnier Little Ice Age in agreement with other δ13C tree-ring series used to reconstruct sunshine duration in central and northern Europe.


Tree rings Stable carbon isotopes Surface solar radiation Dendroclimatology Volcanic eruptions Pyrenees 



The research was funded by the EU-project MILLENNIUM (017008-2), EU-project ISONET (Contract EV K2 = 2001-00237). ASL was supported by a postdoctoral fellowship JCI-2012-12508 and the projects CGL2014-55976-R and CGL2014-52135-C3-01-R from the Spanish Ministry of Economy and Competitiveness. EZ contribution is part of the Cluster of Excellence CLISAP funded by the German Science Foundation. The authors would like to thank the two anonymous reviewers for their constructive comments. Data from this paper is available and can be accessed through the corresponding author.

Supplementary material

382_2015_2881_MOESM1_ESM.docx (28 kb)
Supplementary material 1 (DOCX 27 kb)


  1. Bat-Oyun T, Shinoda M, Tsubo M (2012) Effects of cloud, atmospheric water vapor, and dust on photosynthetically active radiation and total solar radiation in a Mongolian grassland. J Arid Land 4(4):349–356CrossRefGoogle Scholar
  2. Battipaglia G, Cherubini P, Saurer M, Siegwolf RTW, Strumia S, Cotrufo MF (2007) Volcanic explosive eruptions of the Vesuvio decrease tree ring growth but not photosynthesis rates in the surrounding forest. Glob Change Biol 13:1122–1137CrossRefGoogle Scholar
  3. Boettger T, Haupt M, Knöller K, Weise SM, Waterhouse JS, Rinne KT, Loader NJ, Sonninen E, Jungner H, Masson-Delmotte V, Stievenard M, Guillemin M-T, Pierre M, Pazdur A, Leuenberger M, Filot M, Saurer M, Reynolds CE, Helle G, Schleser GH (2007) Wood cellulose preparation methods and mass spectrometric analyses of δ13C, δ18O and non-exchangeable δ2H values in cellulose, sugar and starch: an inter-laboratory comparison. Anal Chem 79:4603–4612. doi: 10.1021/ac0700023
  4. Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen VM, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh SK, Sherwood S, Stevens B, Zhang XY (2013) Clouds and aerosols. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Doschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 571–657. doi: 10.1017/CBO9781107415324.016
  5. Bunn A (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26(2):115–124CrossRefGoogle Scholar
  6. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289(5477):270–277CrossRefGoogle Scholar
  7. D’Arrigo R, Wilson R, Tudhope A (2009) Impact of volcanic forcing on tropical climate during the past five centuries. Nat Geosci 2:51–56. doi: 10.1038/NGE0393 CrossRefGoogle Scholar
  8. D’Arrigo R, Wilson R, Anchukaitis KJ (2013) Volcanic cooling signal in tree ring temperature records for the past millennium. J Geophys Res Atmospheres 118(16):9000–9010CrossRefGoogle Scholar
  9. Dessler AE (2010) A determination of the cloud feedback from climate variations over the past decade. Science 330:1523–1527CrossRefGoogle Scholar
  10. Dorado Liñán I, Gutierrez E, Helle G, Heinrich I, Andreu-Hayles L, Planells O, Leuenberger M, Bürger C, Schleser G (2011) Pooled versus separate measurements of tree-ring stable isotopes. Sci Total Environ 409:2244–2251CrossRefGoogle Scholar
  11. Dorado Liñán I, Büntgen U, González-Rouco F, Zorita E, Montávez JP, Gómez-Navarro JJ, Brunet M, Heinrich I, Helle G, Gutiérrez E (2012) Estimating 750 years of temperature variations and uncertainties in the Pyrenees by tree-ring reconstructions and climate simulations. Clim Past 8(3):919–933CrossRefGoogle Scholar
  12. Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137CrossRefGoogle Scholar
  13. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physio Plant Mol Biol 40:503–537. doi: 10.1146/annurev.pp.40.060189.002443 CrossRefGoogle Scholar
  14. Fischer EM, Luterbacher J, Zorita E, Tett SFB, Casty C, Wanner H (2007) European climate response to tropical volcanic eruptions over the last half millennium. Geophys Res Lett 34:L05707. doi: 10.1029/2006GL027992 CrossRefGoogle Scholar
  15. Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring V., Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Evaluation of climate models. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  16. Gagen M, McCarroll D, Loader NJ, Robertson I, Jalkanen R, Anchukaitis KJ (2007) Exorcising the ‘segment length curse’: summer temperature reconstruction since AD 1640 using non-detrended stable carbon isotope ratios from pine trees in northern Finland. Holocene 17:435–446CrossRefGoogle Scholar
  17. Gagen M, Zorita E, McCarroll D, Young GHF, Grudd H, Jalkanen R, Loader NJ, Robertson I, Kirchhefer AJ (2011) Cloud response to summer temperatures in Fennoscandia over the last thousand years. Geophys Res Lett 38:L05701. doi: 10.1029/2010GL046216 CrossRefGoogle Scholar
  18. Gao CC, Robock A, Ammann C (2008) Volcanic forcing of climate over the past 1500 years: an improved ice corebased index for climate models. J Geophys Res 113:D23111CrossRefGoogle Scholar
  19. Hafner P, McCarroll D, Robertson I, Loader N, Gagen M, Young G, Bale R, Sonninen E, Levanič T (2014) A 520 year record of summer sunshine for the eastern European Alps based on stable carbon isotopes in larch tree rings. ClimDyn 43(3–4):971–980. doi: 10.1007/s00382-013-1864-z Google Scholar
  20. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78Google Scholar
  21. Jacovides CP, Tymvios FS, Asimakopoulos DN, Theofilou KM, Pashiardes S (2003) Global photosynthetically active radiation and its relationship with global solar radiation in the Eastern Mediterranean basin. Theor Appl Climatol 74:227–233CrossRefGoogle Scholar
  22. Leavitt SW, Long A (1984) Sampling strategies for stable carbon isotopes analysis of tree rings in pines. Nature 311:145–147CrossRefGoogle Scholar
  23. Loader NJ, Young GHF, Grudd H, McCarroll D (2013) Stable carbon isotopes from Torneträsk, northern Sweden provide a millennial length reconstruction of summer sunshine and its relationship to Arctic circulation. Quat Sci Rev 62:97–113CrossRefGoogle Scholar
  24. Mace GG, Benson S, Kato S (2006) Cloud radiative forcing at the Atmospheric Radiation Measurement Program Climate Research Facility: 2. Vertical redistribution of radiant energy by clouds. J Geophys Res 111:D11S91. doi: 10.1029/2005JD005922 Google Scholar
  25. Makowski K, Wild M, Ohmura A (2008) Diurnal temperature range over Europe between 1950 and 2005. Atmos Chem Phys 8:7051–7084CrossRefGoogle Scholar
  26. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quatern Sci Rev 23:771–801CrossRefGoogle Scholar
  27. Melvin TM, Grudd H, Briffa KR (2012) Potential bias in ‘updating’ tree-ring chronologies using regional curve standardisation: re-processing 1500 years of Torneträsk density and ring-width data. Holocene 23:364–373. doi: 10.1177/0959683612460791 CrossRefGoogle Scholar
  28. Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1018CrossRefGoogle Scholar
  29. Miller GH, Geirsdóttir A, Zhong Y, Larsen DJ, Otto-Bliesner BL, Holland MM, Bailey DA, Refsnider KA, Lehman SJ, Southon JR, Anderson C, Björnsson H, Thordarson T (2012) Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys Res Lett 39:L02708. doi: 10.1029/2011GL050168 CrossRefGoogle Scholar
  30. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563CrossRefGoogle Scholar
  31. Ogle N, Turney CSM, Kalin RM, O’Donnell L, Butler CJ (2005) Palaeovolcanic forcing of short‐term dendroisotopic depletion: the effect of decreased solar intensity on Irish oak. Geophys Res Lett 32. doi:  10.1029/2004GL021623. ISSN: 0094-8276
  32. Panofsky HA, Brier GW (1958) Some applications of statistics to meteorology. Penn State University Press, University ParkGoogle Scholar
  33. Papaioannou G, Papanikolaou N, Retalis D (1993) Relationships of photosynthetically active radiation and shortwave irradiance. Theor Appl Climatol 48:23–27CrossRefGoogle Scholar
  34. Planells O, Andreu L, Bosch O, Gutiérrez E, Filot M, Leuenberger M, Helle G, Schleser GH (2006) The potential of stable isotopes to record aridity conditions in a forest with low-sensitive ring widths from eastern Pre-Pyrenees. In: Heinrich I, Gärtner H, Monbaron M, Schleser G (eds) (2006) TRACE—Tree Rings Archaeol Climatol Ecol 4:266–272Google Scholar
  35. Posselt R, Mueller R, Stöckli R, Trentmann J (2012) Remote sensing of solar surface radiation for climate monitoring - The CM-SAF retrieval in international comparison. Remote Sens Environ 118:186–198CrossRefGoogle Scholar
  36. Román R, Bilbao J, de Miguel A (2014) Reconstruction of six decades of daily total solar shortwave irradiation in the Iberian Peninsula using sunshine duration records. Atmos Environ 99:41–50. doi: 10.1016/j.atmosenv.2014.09.052 CrossRefGoogle Scholar
  37. Sanchez-Lorenzo A, Brunetti M, Calbo J, Martin-Vide J (2007) Recent spatial and temporal variability and trends of sunshine duration over the Iberian Peninsula from a homogenized dataset. J Geophys Res 112:D20115. doi: 10.1029/2007JD008677 CrossRefGoogle Scholar
  38. Sanchez-Lorenzo A, Calbó J, Wild M (2012) Increasing cloud cover in the 20th century: review and new findings in Spain. Clim Past 8:1199–1212CrossRefGoogle Scholar
  39. Sanchez-Lorenzo A, Wild M, Trentmann J (2013a) Validation and stability assessment of the monthly mean CM SAF surface solar radiation data set over Europe against a homogenized surface dataset (1983–2005). Remote Sens Environ 134:355–366CrossRefGoogle Scholar
  40. Sanchez-Lorenzo A, Calbó J, Wild M (2013b) Global and diffuse solar radiation in Spain: building a homogeneous dataset and assessing their trends. Glob Planet Change 100:343–352CrossRefGoogle Scholar
  41. Sanchez-Romero A, Sanchez-Lorenzo A, Calbó J, González JA, Azorin-Molina C (2014) The signal of aerosol-induced changes in sunshine duration records: a review of the evidence. J Geophys Res Atmospheres 119(8):4657–4673CrossRefGoogle Scholar
  42. Saurer M, Cherubini P, Reynolds-Henne CE, Treydte KS, Anderson WT, Siegwolf RTW (2008) An investigation of the common signal in tree ring stable isotope chronologies at temperate sites. J Geophys Res 113:G04035CrossRefGoogle Scholar
  43. Stanhill G, Cohen S (2001) Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agricult For Meteorol 107:255–278CrossRefGoogle Scholar
  44. Stephens GL (2005) Cloud feedbacks in the climate system: a critical review. J Clim 18:237–273CrossRefGoogle Scholar
  45. Stevens B, Bony S (2013) What are climate models missing? Science 344:1053–1054. doi: 10.1126/science.1237554 CrossRefGoogle Scholar
  46. Stine AR, Huybers P (2014) Arctic tree rings as recorders of variations in light availability. Nat Commun 5:3836. doi: 10.1038/ncomms4836 CrossRefGoogle Scholar
  47. Stokes MA, Smiley TL (1968) Introduction to tree-ring dating. University of Chicago Press, ChicagoGoogle Scholar
  48. Treydte K, Schleser GH, Schweingruber FH, Winiger M (2001) The climatic significance of δ13C in subalpine spruces (Lötschental, SwissAlps). Tellus 53B:593–611CrossRefGoogle Scholar
  49. van den Besselaar EJM, Sanchez-Lorenzo A, Wild M, Klein Tank AMG, de Laat ATJ (2015) Relationship between sunshine duration and temperature trends across Europe since the second half of the 20th century. J Geophys Res Atmos 120. doi: 10.1002/2015JD023640
  50. Wang KC, Dickinson RE (2013) Contribution of solar radiation to decadal temperature variability over land. PNAS 110(37):14877–14882. doi: 10.1073/pnas.1311433110 CrossRefGoogle Scholar
  51. Wild M (2009) Global dimming and brightening: a review. J Geophys Res 114:D00D16. doi: 10.1029/2008JD011470 Google Scholar
  52. Wild M (2012) Enlightening global dimming and brightening. Bull Am MeteorolSoc 93(1):27–37. doi: 10.1175/BAMS-D-11-00074.1 CrossRefGoogle Scholar
  53. Wild M, Gilgen H, Roesch A, Ohmura A, Long C, Dutton E, Forga B, Kallis A, Russak V, Tsvetkov A (2005) From dimming to brightening: decadal changes in solar radiation at the Earth’s surface. Science 308:847–850CrossRefGoogle Scholar
  54. Wild M, Ohmura A, Makowski K (2007) Impact of global dimming and brightening on global warming. Geophys Res Lett 34:L04702. doi: 10.1029/2006GL028031 CrossRefGoogle Scholar
  55. Young GHF, McCarroll D, Loader NJ, Kirchhefer AJ (2010) A 500-year record of summer near-ground solar radiation from tree-ring stable carbon isotopes. Holocene 20(3):315–324CrossRefGoogle Scholar
  56. Young G, McCarroll D, Loader N, Gagen M, Kirchhefer A, Demmler J (2012) Changes in atmospheric circulation and the Arctic Oscillation preserved within a millennial length reconstruction of summer cloud cover from northern Fennoscandia. Clim Dyn 39(1–2):495–507. doi: 10.1007/s00382-011-1246-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • I. Dorado-Liñán
    • 1
    Email author
  • A. Sanchez-Lorenzo
    • 2
  • E. Gutiérrez Merino
    • 3
  • O. Planells
    • 3
  • I. Heinrich
    • 4
  • G. Helle
    • 4
  • E. Zorita
    • 5
  1. 1.EcoclimatologyTechnische Universität MünchenMunichGermany
  2. 2.Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE–CSIC)ZaragozaSpain
  3. 3.Departamentd’EcologiaUniversitat de BarcelonaBarcelonaSpain
  4. 4.Climate Dynamics and Landscape EvolutionGFZ, German Research Centre for GeosciencesPotsdamGermany
  5. 5.Institute for Coastal ResearchHelmholtz-Zentrum-GeesthachtGeesthachtGermany

Personalised recommendations