Skip to main content

Impact of land-surface initialization on sub-seasonal to seasonal forecasts over Europe

Abstract

Land surfaces and soil conditions are key sources of climate predictability at the seasonal time scale. In order to estimate how the initialization of the land surface affects the predictability at seasonal time scale, we run two sets of seasonal hindcasts with the general circulation model EC-Earth2.3. The initialization of those hindcasts is done either with climatological or realistic land initialization in May using the ERA-Land re-analysis. Results show significant improvements in the initialized run occurring up to the last forecast month. The prediction of near-surface summer temperatures and precipitation at the global scale and over Europe are improved, as well as the warm extremes prediction. As an illustration, we show that the 2010 Russian heat wave is only predicted when soil moisture is initialized. No significant improvement is found for the retrospective prediction of the 2003 European heat wave, suggesting this event to be mainly large-scale driven. Thus, we confirm that late-spring soil moisture conditions can be decisive in triggering high-impact events in the following summer in Europe. Accordingly, accurate land-surface initial conditions are essential for seasonal predictions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Balmaseda M, Anderson D (2009) Impact of initialization strategies and observations on seasonal forecast skill. Geophys Res Lett 36:L01701. doi:10.1029/2008GL035561

    Article  Google Scholar 

  2. Balmaseda M, Anderson D, Vidard A (2007) Impact of Argo on analyses of the global ocean. Geophys Res Lett 34:L16605. doi:10.1029/2007GL030452

    Google Scholar 

  3. Balmaseda M, Vidard A, Anderson DLT (2008) The ECMWF ocean analysis system: ORA-S3. Mon Weather Rev 136:3018–3034. doi:10.1175/2008MWR2433.1

    Article  Google Scholar 

  4. Balmaseda M, Alves O, Arribas A et al (2009) Ocean initialization for seasonal forecasts. Oceanography 22:154–159

    Article  Google Scholar 

  5. Balmaseda M, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139:1132–1161. doi:10.1002/qj.2063

    Article  Google Scholar 

  6. Balsamo G, Beljaars A, Scipal K et al (2009) A revised hydrology for the ECMWF model: verification from field site to terrestrial water storage and impact in the integrated forecast system. J Hydrometeorol 10:623–643. doi:10.1175/2008JHM1068.1

    Article  Google Scholar 

  7. Balsamo G et al (2015) ERA-Interim/Land: a global land surface reanalysis data set. Hydrol Earth Syst Sci 19:389–407. doi:10.5194/hess-19-389-2015

    Article  Google Scholar 

  8. Behera S, Ratnam JV, Masumoto Y, Yamagata T (2012) Origin of extreme summers in Europe: the Indo-Pacific connection. Clim Dyn 41:663–676. doi:10.1007/s00382-012-1524-8

    Article  Google Scholar 

  9. Bellprat O, Kotlarski S, Lüthi D, Schär C (2013) Physical constraints for temperature biases in climate models. Geophys Res Lett 40:4042–4047. doi:10.1002/grl.50737

    Article  Google Scholar 

  10. Cassou C, Terray L, Phillips A (2005) Tropical Atlantic influence on European heat waves. J Clim 18:2805–2811

    Article  Google Scholar 

  11. Challinor AJ, Slingo JM, Wheeler TR, Doblas-Reyes FJ (2005) Probabilistic simulations of crop yield over western India using the DEMETER seasonal hindcast ensembles. Tellus A 57:498–512. doi:10.1111/j.1600-0870.2005.00126.x

    Article  Google Scholar 

  12. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81:7–30

    Article  Google Scholar 

  13. Cohen J, Screen JA, Furtado JC et al (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7:627–637. doi:10.1038/ngeo2234

    Article  Google Scholar 

  14. Dee DP, Berrisford P, Poli P, Fuentes M (2009) ERA-Interim for climate monitoring. ECMWF Newslett 119:5–6

    Google Scholar 

  15. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  16. Dirmeyer P (2005) The land surface contribution to the potential predictability of boreal summer season climate. J Hydrometeorol 6:618–632. doi:10.1175/JHM444.1

    Article  Google Scholar 

  17. Doblas-Reyes FJ, Hagedorn R, Palmer TN, Morcrette J-J (2006) Impact of increasing greenhouse gas concentrations in seasonal ensemble forecasts. Geophys Res Lett 33:L07708. doi:10.1029/2005GL025061

    Article  Google Scholar 

  18. Doblas-Reyes FJ, García-Serrano J, Lienert F et al (2013) Seasonal climate predictability and forecasting: status and prospects. Wiley Interdiscip Rev Clim Change 4:245–268. doi:10.1002/wcc.217

    Article  Google Scholar 

  19. Dole R, Hoerling M, Perlwitz J et al (2011) Was there a basis for anticipating the 2010 Russian heat wave? Geophys Res Lett 38:1–5. doi:10.1029/2010GL046582

    Article  Google Scholar 

  20. Douville H (2010) Relative contribution of soil moisture and snow mass to seasonal climate predictability: a pilot study. Clim Dyn 34:797–818. doi:10.1007/s00382-008-0508-1

    Article  Google Scholar 

  21. Eade R, Hamilton E, Smith DM et al (2012) Forecasting the number of extreme daily events out to a decade ahead. J Geophys Res Atmos 117:D21110. doi:10.1029/2012JD018015

    Article  Google Scholar 

  22. Ferranti L, Viterbo P (2006) The European summer of 2003: sensitivity to soil water initial conditions. J Clim 19:3659–3680. doi:10.1175/JCLI3810.1

    Article  Google Scholar 

  23. Feudale L, Shukla J (2011a) Influence of sea surface temperature on the European heat wave of 2003 summer. Part I: an observational study. Clim Dyn 36:1691–1703. doi:10.1007/s00382-010-0788-0

    Article  Google Scholar 

  24. Feudale L, Shukla J (2011b) Influence of sea surface temperature on the European heat wave of 2003 summer. Part II: a modeling study. Clim Dyn 36:1705–1715. doi:10.1007/s00382-010-0789-z

    Article  Google Scholar 

  25. Fichefet T, Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12609. doi:10.1029/97JC00480

    Article  Google Scholar 

  26. Fischer EM (2014) Climate science: autopsy of two mega-heatwaves. Nat Geosci 7:332–333. doi:10.1038/ngeo2148

    Article  Google Scholar 

  27. Fischer EM, Seneviratne SI, Lüthi D, Schär C (2007a) Contribution of land–atmosphere coupling to recent European summer heat waves. Geophys Res Lett 34:L06707. doi:10.1029/2006GL029068

    Article  Google Scholar 

  28. Fischer EM, Seneviratne SI, Vidale PL et al (2007b) Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J Clim 20:5081–5099. doi:10.1175/JCLI4288.1

    Article  Google Scholar 

  29. Fosser G, Khodayar S, Berg P (2014) Benefit of convection permitting climate model simulations in the representation of convective precipitation. Clim Dyn 44:45–60. doi:10.1007/s00382-014-2242-1

    Article  Google Scholar 

  30. Frenkel Y, Majda AJ, Khouider B (2012) Using the stochastic multicloud model to improve tropical convective parameterization: a paradigm example. J Atmos Sci 69:1080–1105. doi:10.1175/JAS-D-11-0148.1

    Article  Google Scholar 

  31. García-Herrera R, Díaz J, Trigo RM et al (2010) A review of the European summer heat wave of 2003. Crit Rev Environ Sci Technol 40:267–306. doi:10.1080/10643380802238137

    Article  Google Scholar 

  32. García-Morales M, Dubus L (2007) Forecasting precipitation for hydroelectric power management: how to exploit GCM’s seasonal ensemble forecasts. Int J Climatol 1705:1691–1705. doi:10.1002/joc

    Article  Google Scholar 

  33. Guemas V, Doblas-Reyes FJ, Mogensen K et al (2014) Ensemble of sea ice initial conditions for interannual climate predictions. Clim Dyn. doi:10.1007/s00382-014-2095-7

    Google Scholar 

  34. Hamilton E, Eade R, Graham RJ et al (2012) Forecasting the number of extreme daily events on seasonal timescales. J Geophys Res 117:D03114. doi:10.1029/2011JD016541

    Article  Google Scholar 

  35. Hazeleger W, Wang X, Severijns C et al (2011) EC-Earth 8.2: description and validation of a new seamless earth system prediction model. Clim Dyn 39:2611–2629. doi:10.1007/s00382-011-1228-5

    Article  Google Scholar 

  36. Hirschi M, Seneviratne SI, Alexandrov V et al (2011) Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat Geosci 4:17–21. doi:10.1038/ngeo1032

    Article  Google Scholar 

  37. Hourdin F, Grandpeix J-Y, Rio C et al (2013) LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Clim Dyn 40:2193–2222. doi:10.1007/s00382-012-1343-y

    Article  Google Scholar 

  38. Jaeger EB, Seneviratne SI (2010) Impact of soil moisture–atmosphere coupling on European climate extremes and trends in a regional climate model. Clim Dyn 36:1919–1939. doi:10.1007/s00382-010-0780-8

    Article  Google Scholar 

  39. Kim H-M, Webster PJ, Curry JA (2012) Seasonal prediction skill of ECMWF system 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere Winter. Clim Dyn 39:2957–2973. doi:10.1007/s00382-012-1364-6

    Article  Google Scholar 

  40. Koster RD, Suarez MJ, Liu P et al (2004) Realistic initialization of land surface states: impacts on subseasonal forecast skill. J Hydrometeorol 5:1049–1063

    Article  Google Scholar 

  41. Koster RD, Mahanama SPP, Yamada TJ et al (2010) Contribution of land surface initialization to subseasonal forecast skill: first results from a multi-model experiment. Geophys Res Lett 37:L02402. doi:10.1029/2009GL041677

    Article  Google Scholar 

  42. Koster RD, Mahanama SPP, Yamada TJ et al (2011) The second phase of the global land-atmosphere coupling experiment: soil moisture contributions to subseasonal forecast skill. J Hydrometeorol 12:805–822. doi:10.1175/2011JHM1365.1

    Article  Google Scholar 

  43. Kutiel H, Benaroch Y (2002) North Sea-Caspian Pattern (NCP)—an upper level atmospheric teleconnection affecting the Eastern Mediterranean: identification and definition. Theor Appl Climatol 28:17–28. doi:10.1007/s704-002-8205-x

    Article  Google Scholar 

  44. Landman WA, Beraki A (2012) Multi-model forecast skill for mid-summer rainfall over southern Africa. Int J Climatol 32:303–314. doi:10.1002/joc.2273

    Article  Google Scholar 

  45. Lee S-S, Lee J-Y, Ha K-J et al (2011) Deficiencies and possibilities for long-lead coupled climate prediction of the Western North Pacific–East Asian summer monsoon. Clim Dyn 36:1173–1188. doi:10.1007/s00382-010-0832-0

    Article  Google Scholar 

  46. MacLachlan C, Arribas A, Peterson KA et al (2014) Global Seasonal Forecast System version 5 (GloSea5): a high resolution seasonal forecast system. Q J R Meteorol Soc. doi:10.1002/qj.2396

    Google Scholar 

  47. Madec G (2008) NEMO ocean engine. Note du Pole de modelisation, Institut Pierre-Simon Laplace (IPSL) No 27. ISSN: 1288-1619

  48. Mason S, Mimmack G (1992) The use of bootstrap confidence intervals for the correlation coefficient in climatology. Theor Appl Climatol 45:229–233

    Article  Google Scholar 

  49. Materia S, Borrelli A, Bellucci A et al (2014) Impact of atmosphere and land surface initial conditions on seasonal forecasts of global surface temperature. J Clim 27:9253–9271. doi:10.1175/JCLI-D-14-00163.1

    Article  Google Scholar 

  50. Miralles DG, Teuling AJ, Van Heerwaarden CC (2014) Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat Geosci 7:345–349. doi:10.1038/ngeo2141

    Article  Google Scholar 

  51. Orsolini YJ, Kvamstø NG (2009) Role of Eurasian snow cover in wintertime circulation: decadal simulations forced with satellite observations. J Geophys Res 114:D19108. doi:10.1029/2009JD012253

    Article  Google Scholar 

  52. Orth Rene, Seneviratne SI (2015) Introduction of a simple-model-based land surface dataset for Europe. Environ Res Lett 10:044012. doi:10.1088/1748-9326/10/4/044012

    Article  Google Scholar 

  53. Palmer TN, Shutts GJ, Hagedorn R et al (2005a) Representing model uncertainty in weather and climate prediction. Annu Rev Earth Planet Sci 33:163–193. doi:10.1146/annurev.earth.33.092203.122552

    Article  Google Scholar 

  54. Palmer TN, Doblas-Reyes FJ, Hagedorn R, Weisheimer A (2005b) Probabilistic prediction of climate using multi-model ensembles: from basics to applications. Philos Trans R Soc Lond B Biol Sci 360:1991–1998. doi:10.1098/rstb.2005.1750

    Article  Google Scholar 

  55. Pepler AS, Diaz L, Prodhomme C, Doblas-Reyes FJ, Kumar A (2015) The ability of a multi-model seasonal forecasting ensemble to forecast the seasonal distribution of daily extremes. Weather Clim Extrem 9:68–77

    Article  Google Scholar 

  56. Phelps M, Kumar A, O’Brien J (2004) Potential predictability in the NCEP CPC dynamical seasonal forecast system. J Clim 17:3775–3785

    Article  Google Scholar 

  57. Quesada B, Vautard R, Yiou P et al (2012) Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nat Clim Change 2:736–741. doi:10.1038/nclimate1536

    Article  Google Scholar 

  58. Reinhold B, Pierrehumbert R (1982) Dynamics of weather regimes: quasi-stationary waves and blocking. Mon Weather Rev 110:1105–1145

    Article  Google Scholar 

  59. Rodwell M, Rowell D, Folland C (1999) Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature 398:25–28

    Article  Google Scholar 

  60. Rogers J (1997) North Atlantic storm track variability and its association to the North Atlantic Oscillation and climate variability of northern Europe. J Clim 10:1635–1647

    Article  Google Scholar 

  61. Saha S, Moorthi S, Pan H-L et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057. doi:10.1175/2010BAMS3001.1

    Article  Google Scholar 

  62. Scaife AA, Copsey D, Gordon C et al (2011) Improved Atlantic winter blocking in a climate model. Geophys Res Lett 38:L23703. doi:10.1029/2011GL049573

    Article  Google Scholar 

  63. Schär C, Lüthi D, Beyerle U, Heise E (1999) The soil-precipitation feedback: a process study with a regional climate model. J Clim 12:722–741

    Article  Google Scholar 

  64. Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land–atmosphere coupling and climate change in Europe. Nature 443:205–209. doi:10.1038/nature05095

    Article  Google Scholar 

  65. Seneviratne SI, Corti T, Davin EL et al (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev 99:125–161. doi:10.1016/j.earscirev.2010.02.004

    Article  Google Scholar 

  66. Seneviratne SI, Lehner I, Gurtz J et al (2012) Swiss prealpine Rietholzbach research catchment and lysimeter: 32 year time series and 2003 drought event. Water Resour Res 48:1–20. doi:10.1029/2011WR011749

    Article  Google Scholar 

  67. Seneviratne S, Wilhelm M, Stanelle T et al (2013) Impact of soil moisture–climate feedbacks on CMIP5 projections: first results from the GLACE-CMIP5 experiment. Geophys Res Lett 40:5212–5217. doi:10.1002/grl.50956

    Article  Google Scholar 

  68. Shaman J, Tziperman E (2011) An atmospheric teleconnection linking ENSO and southwestern European precipitation. J Clim 24:124–139. doi:10.1175/2010JCLI3590.1

    Article  Google Scholar 

  69. Shukla J, Kinter JL III (2006) Predictability of seasonal climate variations: a pedagogical review. In: Palmer T, Hagedorn R (eds) Predictability of weather and climate. Cambridge University Press, London, pp 306–341

    Chapter  Google Scholar 

  70. Steiger JH (1980) Tests for comparing elements of a correlation matrix. Psychol Bull. doi:10.1037/0033-2909.87.2.245

    Google Scholar 

  71. Thomson MC, Doblas-reyes FJ, Mason SJ et al (2006) Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 439:576–579. doi:10.1038/nature04503

    Article  Google Scholar 

  72. Valcke S (2006) OASIS3 user guide (prism_2-5). PRISM support initiative report 3, p 64

  73. van den Hurk BJJM et al (2000) Offline validation of the ERA40 surface scheme. European Centre for Medium-Range Weather Forecasts Technical Memorandum 295. http://nwmstest.ecmwf.int/publications/library/do/references/show?id=83838

  74. van den Hurk BJJM, Doblas-Reyes F, Balsamo G et al (2010) Soil moisture effects on seasonal temperature and precipitation forecast scores in Europe. Clim Dyn 38:349–362. doi:10.1007/s00382-010-0956-2

    Article  Google Scholar 

  75. van Oldenborgh GJ, Doblas Reyes FJ, Drijfhout SS, Hawkins E (2013) Reliability of regional climate model trends. Environ Res Lett 8:014055. doi:10.1088/1748-9326/8/1/014055

    Article  Google Scholar 

  76. von Storch H, Zwiers FW (2001) Statistical analysis in climate research. Cambridge University Press, Cambridge

    Google Scholar 

  77. Wang A, Bohn TJ, Mahanama SP et al (2009) Multimodel ensemble reconstruction of drought over the continental United States. J Clim 22:2694–2712. doi:10.1175/2008JCLI2586.1

    Article  Google Scholar 

  78. Wang G, Dolman AJ, Alessandri A (2011) A summer climate regime over Europe modulated by the North Atlantic Oscillation. Hydrol Earth Syst Sci 15:57–64. doi:10.5194/hess-15-57-2011

    Article  Google Scholar 

  79. Weisheimer A, Doblas-Reyes FJ, Jung T, Palmer TN (2011) On the predictability of the extreme summer 2003 over Europe. Geophys Res Lett. doi:10.1029/2010GL046455

    Google Scholar 

  80. Whan K, Zscheischler J, Orth R et al (2015) Impact of soil moisture on extreme maximum temperatures in Europe. Weather Clim Extrem. doi:10.1016/j.wace.2015.05.001

    Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the EU Seventh Framework Programme FP7 (2007–2013) under grant agreements 308378 (SPECS), 282378 (DENFREE) and 607085 (EUCLEIA), and from the Spanish Ministerio de Economía y Competitividad (MINECO) under the project CGL2013-41055-R. We acknowledge the s2dverification R-based package (http://cran.r-project.org/web/packages/s2dverification/index.html). We also thank ECMWF for providing the ERA-Land initial conditions and computing resources through the SPICCF Special Project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chloé Prodhomme.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3889 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prodhomme, C., Doblas-Reyes, F., Bellprat, O. et al. Impact of land-surface initialization on sub-seasonal to seasonal forecasts over Europe. Clim Dyn 47, 919–935 (2016). https://doi.org/10.1007/s00382-015-2879-4

Download citation

Keywords

  • Land-surface initialization
  • Seasonal forecasting
  • Extreme
  • Heat wave