Climate Dynamics

, Volume 47, Issue 3–4, pp 719–737 | Cite as

Daily precipitation statistics in a EURO-CORDEX RCM ensemble: added value of raw and bias-corrected high-resolution simulations

  • A. CasanuevaEmail author
  • S. Kotlarski
  • S. Herrera
  • J. Fernández
  • J. M. Gutiérrez
  • F. Boberg
  • A. Colette
  • O. B. Christensen
  • K. Goergen
  • D. Jacob
  • K. Keuler
  • G. Nikulin
  • C. Teichmann
  • R. Vautard


Daily precipitation statistics as simulated by the ERA-Interim-driven EURO-CORDEX regional climate model (RCM) ensemble are evaluated over two distinct regions of the European continent, namely the European Alps and Spain. The potential added value of the high-resolution 12 km experiments with respect to their 50 km resolution counterparts is investigated. The statistics considered consist of wet-day intensity and precipitation frequency as a measure of mean precipitation, and three precipitation-derived indicators (90th percentile on wet days—90pWET, contribution of the very wet days to total precipitation—R95pTOT and number of consecutive dry days—CDD). As reference for model evaluation high resolution gridded observational data over continental Spain (Spain011/044) and the Alpine region (EURO4M-APGD) are used. The assessment and comparison of the two resolutions is accomplished not only on their original horizontal grids (approximately 12 and 50 km), but the high-resolution RCMs are additionally regridded onto the coarse 50 km grid by grid cell aggregation for the direct comparison with the low resolution simulations. The direct application of RCMs e.g. in many impact modelling studies is hampered by model biases. Therefore bias correction (BC) techniques are needed at both resolutions to ensure a better agreement between models and observations. In this work, the added value of the high resolution (before and after the bias correction) is assessed and the suitability of these BC methods is also discussed. Three basic BC methods are applied to isolate the effect of biases in mean precipitation, wet-day intensity and wet-day frequency on the derived indicators. Daily precipitation percentiles are strongly affected by biases in the wet-day intensity, whereas the dry spells are better represented when the simulated precipitation frequency is adjusted to the observed one. This confirms that there is no single optimal way to correct for RCM biases, since correcting some distributional features typically leads to an improvement of some aspects but to a deterioration of others. Regarding mean seasonal biases before the BC, we find only limited evidence for an added value of the higher resolution in the precipitation intensity and frequency or in the derived indicators. Thereby, evaluation results considerably depend on the RCM, season and indicator considered. High resolution simulations better reproduce the indicators’ spatial patterns, especially in terms of spatial correlation. However, this improvement is not statistically significant after applying specific BC methods.


Regional climate models EURO-CORDEX Added value Bias correction Precipitation indices 



The authors are grateful to Prof. C. Schär for his helpful comments and E. van Meijgaard for making available the RACMO model data. We acknowledge the observational data providers. Calculations for WRF311F were made using the TGCC super computers under the GENCI time allocation GEN6877. The WRF331A from CRP-GL (now LIST) was funded by the Luxembourg National Research Fund (FNR) through Grant FNR C09/SR/16 (CLIMPACT). The KNMI-RACMO2 simulations were supported by the Dutch Ministry of Infrastructure and the Environment. The CCLM and REMO simulations were supported by the Federal Ministry of Education and Research (BMBF) and performed under the Konsortial share at the German Climate Computing Centre (DKRZ). The CCLM simulations were furthermore supported by the Swiss National Supercomputing Centre (CSCS) under project ID s78. Part of the SMHI contribution was carried out in the Swedish Mistra-SWECIA programme founded by Mistra (the Foundation for Strategic Environmental Research). This work is supported by CORWES (CGL2010-22158-C02) and EXTREMBLES (CGL2010-21869) projects funded by the Spanish R&D programme and the European COST ACTION VALUE (ES1102). A. C. thanks the Spanish Ministry of Economy and Competitiveness for the funding provided within the FPI programme (BES-2011-047612 and EEBB-I-13-06354). We also thank two anonymous referees for their useful comments that helped to improve the original manuscript.

Supplementary material

382_2015_2865_MOESM1_ESM.pdf (2 mb)
Supplementary material 1 (pdf 2033 KB)


  1. Argüeso D, Evans JP, Fita L (2013) Precipitation bias correction of very high resolution regional climate models. Hydrol Earth Syst Sci 17(11):4379–4388. doi: 10.5194/hess-17-4379-2013 CrossRefGoogle Scholar
  2. Aviad Y, Kutiel H, Lavee H (2013) Empirical models of rain-spells characteristics—a case study of a Mediterranean-arid climatic transect. J Arid Environ 97:84–91. doi: 10.1016/j.jaridenv.2013.05.015 CrossRefGoogle Scholar
  3. Bärring L, Holt T, Linderson M, Radziejewski M, Moriondo M, Palutikof JP (2006) Defining dry/wet spells for point observations, observed area averages, and regional climate model gridboxes in Europe. Clim Res 31(1):35–49. doi: 10.3354/cr031035 CrossRefGoogle Scholar
  4. Bellprat O, Kotlarski S, Lüthi D, Schär C (2013) Physical constraints for temperature biases in climate models. Geophys Res Lett 40(15):4042–4047. doi: 10.1002/grl.50737 CrossRefGoogle Scholar
  5. Benestad RE, Nychka D, Mearns LO (2012) Spatially and temporally consistent prediction of heavy precipitation from mean values. Nat Clim Change 2(7):544–547. doi: 10.1038/NCLIMATE1497 Google Scholar
  6. Boberg F, Christensen JH (2012) Overestimation of Mediterranean summer temperature projections due to model deficiencies. Nat Clim Change 2(6):433–436. doi: 10.1038/nclimate1454 CrossRefGoogle Scholar
  7. Casanueva A, Herrera S, Fernández J, Frías M, Gutiérrez J (2013) Evaluation and projection of daily temperature percentiles from statistical and dynamical downscaling methods. Nat Hazards Earth Syst Sci 3:2089–2099. doi: 10.5194/nhess-13-2089-2013 CrossRefGoogle Scholar
  8. Casanueva A, Rodríguez-Puebla C, Frías M, González-Reviriego F (2014) Variability of extreme precipitation over Europe and its relationships with teleconnection patterns. Hydrol Earth Syst Sci 18:1–17. doi: 10.5194/hess-18-709-2014 CrossRefGoogle Scholar
  9. Chan SC, Kendon EJ, Fowler HJ, Blenkinsop S, Ferro CAT, Stephenson DB (2013) Does increasing the spatial resolution of a regional climate model improve the simulated daily precipitation? Clim Dyn 41(5–6):1475–1495. doi: 10.1007/s00382-012-1568-9 CrossRefGoogle Scholar
  10. Christensen JH, Machenhauer B, Jones RG, Schar C, Ruti PM, Castro M, Visconti G (1997) Validation of present-day regional climate simulations over Europe: LAM simulations with observed boundary conditions. Clim Dyn 13(7–8):489–506CrossRefGoogle Scholar
  11. Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2008) On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett 35(20):L20709. doi: 10.1029/2008GL035694 CrossRefGoogle Scholar
  12. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J, Park B, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRefGoogle Scholar
  13. Déqué M, Jones RG, Wild M, Giorgi F, Christensen JH, Hassell DC, Vidale PL, Rockel B, Jacob D, Kjellstrm E, Castro M, Kucharski F, Bvd H (2005) Global high resolution versus limited area model climate change projections over Europe: quantifying confidence level from PRUDENCE results. Clim Dyn 25(6):653–670. doi: 10.1007/s00382-005-0052-1 CrossRefGoogle Scholar
  14. Di Luca A, de Elía R, Laprise R (2015) Challenges in the quest for added value of regional climate dynamical downscaling. Curr Climate Change Rep 1(1):10–21. doi: 10.1007/s40641-015-0003-9 CrossRefGoogle Scholar
  15. Durman CF, Gregory JM, Hassell DC, Jones RG, Murphy JM (2001) A comparison of extreme European daily precipitation simulated by a global and a regional climate model for present and future climates. Q J R Meteorol Soc 127(573):1005–1015. doi: 10.1002/qj.49712757316 CrossRefGoogle Scholar
  16. Fdez-Arroyabe Hernáez P, Martín-Vide J (2012) Regionalization of the probability of wet spells and rainfall persistence in the Basque Country (northern Spain). Int J Climatol 32(12):1909–1920. doi: 10.1002/joc.2405 CrossRefGoogle Scholar
  17. Fernández J, Montávez JP, Sáenz J, González-Rouco JF, Zorita E (2007) Sensitivity of MM5 mesoscale model to physical parameterizations for regional climate studies: annual cycle. J Geophys Res 112(D04):101. doi: 10.1029/2005JD00664 Google Scholar
  18. Feser F, Rockel B, von Storch H, Winterfeldt J, Zahn M (2011) Regional climate models add value to global model data: a review and selected examples. Bull Am Meteorol Soc 92(9):1181–1192CrossRefGoogle Scholar
  19. Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res Atmos 108(D3):4124. doi: 10.1029/2002JD002287 CrossRefGoogle Scholar
  20. García-Díez M, Fernández J, Fita L, Yagüe C (2013) Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Q J R Meteorol Soc 139:501–514. doi: 10.1002/qj.1976 CrossRefGoogle Scholar
  21. García-Díez M, Fernández J, Vautard R (2015) An RCM multi-physics ensemble over Europe: multi-variable evaluation to avoid error compensation. Clim Dyn. doi: 10.1007/s00382-015-2529-x Google Scholar
  22. Gibelin AL, Déqué M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dyn 20(4):327–339. doi: 10.1007/s00382-002-0277-1 Google Scholar
  23. Giorgi F (2006) Regional climate modeling: status and perspectives. J Phys IV (Proc) 139(1):101–118. doi: 10.1051/jp4:2006139008 Google Scholar
  24. Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):175–183Google Scholar
  25. Grasso L (2000) The differentiation between grid spacing and resolution and their application to numerical modeling. Bull Am Meteorol Soc 81:579–580CrossRefGoogle Scholar
  26. Herrera S, Fita L, Fernández J, Gutiérrez JM (2010) Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulations over Spain. J Geophys Res 115:D21117. doi: 10.1029/2010JD013936 CrossRefGoogle Scholar
  27. Herrera S, Gutiérrez J, Ancell R, Pons M, Frías M, Fernández J (2012) Development and analysis of a 50 year high resolution daily gridded precipitation dataset over Spain (Spain02). Int J Climatol. doi: 10.1002/joc.2256 Google Scholar
  28. Herrera S, Fernández J, Gutiérrez JM (2015) Update of the Spain02 gridded observational dataset for EURO-CORDEX evaluation: assessing the effect of the interpolation methodology. Int J Climatol. doi: 10.1002/joc.4391 Google Scholar
  29. Hofstra N, Haylock M, New M, Jones PD (2009) Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. J Geophys Res Atmos. doi: 10.1029/2009JD011799 Google Scholar
  30. Isotta FA, Frei C, Weilguni V, Perčec Tadić M, Lassègues P, Rudolf B, Pavan V, Cacciamani C, Antolini G, Ratto SM, Munari M, Micheletti S, Bonati V, Lussana C, Ronchi C, Panettieri E, Marigo G, Vertačnik G (2013) The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int J Climatol. doi: 10.1002/joc.3794 Google Scholar
  31. Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M, Déqué M, Giorgi F, Hagemann S, Lenderink G, Rockel B, Sanchez E, Schär C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52CrossRefGoogle Scholar
  32. Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, Ev M, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana JF, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for european impact research. Reg Environ Change 14(2):563–578. doi: 10.1007/s10113-013-0499-2 CrossRefGoogle Scholar
  33. Jerez S, Montavez JP, Jimenez-Guerrero P, Gomez-Navarro JJ, Lorente-Plazas R, Zorita E (2012) A multi-physics ensemble of present-day climate regional simulations over the Iberian Peninsula. Clim Dyn. doi: 10.1007/s00382-012-1539-1 Google Scholar
  34. Kendon EJ, Roberts NM, Senior CA, Roberts MJ (2012) Realism of rainfall in a very high-resolution regional climate model. J Clim 25(17):5791–5806. doi: 10.1175/JCLI-D-11-00562.1 CrossRefGoogle Scholar
  35. Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schär C, Teichmann C, Vautard R, Warrach-Sagi K, Wulfmeyer V (2014) Regional climate modeling on european scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7(4):1297–1333. doi: 10.5194/gmd-7-1297-2014 CrossRefGoogle Scholar
  36. Lázaro R, Rodrigo FS, Gutiérrez L, Domingo F, Puigdefábregas J (2001) Analysis of a 30-year rainfall record (1967–1997) in semi-arid SE Spain for implications on vegetation. J Arid Environ 48(3):373–395. doi: 10.1006/jare.2000.0755 CrossRefGoogle Scholar
  37. Maraun D, Widmann M (2015) The representation of location by regional climate models in complex terrain. Hydrol Earth Syst Sci Discuss 12(3):3011–3028. doi: 10.5194/hessd-12-3011-2015 CrossRefGoogle Scholar
  38. Nikulin G, Kjellstrom E, Hansson U, Strandberg G, Ullerstig A (2011) Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus Ser Dyn Meteorol Oceanogr 63(1):41–55CrossRefGoogle Scholar
  39. Orlowsky B, Seneviratne SI (2012) Global changes in extreme events: regional and seasonal dimension. Clim Change 110(3–4):669–696. doi: 10.1007/s10584-011-0122-9 CrossRefGoogle Scholar
  40. Panofsky HA, Brier GW (1968) Some applications of statistics to meteorology. Penn. State University, College of Earth and Mineral Sciences, University ParkGoogle Scholar
  41. Piani C, Haerter JO, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99(1–2):187–192. doi: 10.1007/s00704-009-0134-9 CrossRefGoogle Scholar
  42. Polanski S, Rinke A, Dethloff K (2010) Validation of the HIRHAM-simulated Indian summer monsoon circulation. Adv Meteorol (e415):632. doi: 10.1155/2010/415632
  43. Prein AF, Holland GJ, Rasmussen RM, Done J, Ikeda K, Clark MP, Liu CH (2013) Importance of regional climate model grid spacing for the simulation of heavy precipitation in the Colorado headwaters. J Clim 26(13):4848–4857. doi: 10.1175/JCLI-D-12-00727.1 CrossRefGoogle Scholar
  44. Prein AF, Gobiet A, Truhetz H, Keuler K, Goergen K, Teichmann C, Fox Maule C, van Meijgaard E, Déqué M, Nikulin G, Vautard R, Colette A, Kjellström E, Jacob D (2015) Precipitation in the EURO-CORDEX 0.11\(^{\circ }\) simulations: high resolution, high benefits? Clim Dyn. doi: 10.1007/s00382-015-2589-y
  45. Pryor SC, Nikulin G, Jones C (2012) Influence of spatial resolution on regional climate model derived wind climates. J Geophys Res 117(D3):D03,117. doi: 10.1029/2011JD016822 CrossRefGoogle Scholar
  46. Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19(16):3771–3791CrossRefGoogle Scholar
  47. Schmidli J, Frei C, Vidale PL (2006) Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. Int J Climatol 26(5):679–689. doi: 10.1002/joc.1287 CrossRefGoogle Scholar
  48. Shkolnik IM, Efimov SV (2013) Cyclonic activity in high latitudes as simulated by a regional atmospheric climate model: added value and uncertainties. Environ Res Lett 8(4):045007. doi: 10.1088/1748-9326/8/4/045007 CrossRefGoogle Scholar
  49. Taylor KE (2001) Summarizing multiple aspects of model performace in a single diagram. J Geophys Res 106(D7):7183–7192CrossRefGoogle Scholar
  50. Teichmann C, Eggert B, Elizalde A, Haensler A, Jacob D, Kumar P, Moseley C, Pfeifer S, Rechid D, Remedio AR, Ries H, Petersen J, Preuschmann S, Raub T, Saeed F, Sieck K, Weber T (2013) How does a regional climate model modify the projected climate change signal of the driving GCM: A study over different CORDEX regions using REMO. Atmosphere 4(2):214–236. doi: 10.3390/atmos4020214 CrossRefGoogle Scholar
  51. Themeßl MJ, Gobiet A, Heinrich G (2012) Empirical–statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim Change 112(2):449–468. doi: 10.1007/s10584-011-0224-4 CrossRefGoogle Scholar
  52. van der Linden P, Mitchell J (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UKGoogle Scholar
  53. Vautard R, Gobiet A, Jacob D, Belda M, Colette A, Déqué M, Fernández J, García-Díez M, Goergen K, Gütler I, Halenka T, Karacostas T, Katragkou E, Keuler K, Kotlarski S, Mayer S, Ev M, Nikulin G, Patarčić M, Scinocca J, Sobolowski S, Suklitsch M, Teichmann C, Warrach-Sagi K, Wulfmeyer V, Yiou P (2013) The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim Dyn 41(9):2555–2575. doi: 10.1007/s00382-013-1714-z CrossRefGoogle Scholar
  54. Vrac M, Friederichs P (2015) Multivariate-intervariable, spatial, and temporal-bias correction. J Clim 28(1):218–237. doi: 10.1175/JCLI-D-14-00059.1 CrossRefGoogle Scholar
  55. Walther A, Jeong JH, Nikulin G, Jones C, Chen D (2013) Evaluation of the warm season diurnal cycle of precipitation over Sweden simulated by the Rossby Centre regional climate model RCA3. Atmos Res 119:131–139. doi: 10.1016/j.atmosres.2011.10.012 CrossRefGoogle Scholar
  56. Wilcke RAI, Mendlik T, Gobiet A (2013) Multi-variable error correction of regional climate models. Clim Change 120(4):871–887. doi: 10.1007/s10584-013-0845-x CrossRefGoogle Scholar
  57. Yoo C, Lee J, Yoon Y (2001) Climatological thresholds of daily rainfall. J Hydrol Eng 6(5):443–449. doi: 10.1061/(ASCE)1084-0699(2001)6:5(443) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. Casanueva
    • 1
    Email author
  • S. Kotlarski
    • 2
  • S. Herrera
    • 1
  • J. Fernández
    • 1
  • J. M. Gutiérrez
    • 3
  • F. Boberg
    • 4
  • A. Colette
    • 5
  • O. B. Christensen
    • 4
  • K. Goergen
    • 6
  • D. Jacob
    • 7
    • 8
  • K. Keuler
    • 9
  • G. Nikulin
    • 10
  • C. Teichmann
    • 7
  • R. Vautard
    • 11
  1. 1.Grupo de Meteorología, Dpto. Matemática Aplicada y Ciencias de la ComputaciónUniv. de CantabriaSantanderSpain
  2. 2.Institute for Atmospheric and Climate ScienceETH ZurichZurichSwitzerland
  3. 3.Grupo de MeteorologíaInstituto de Física de Cantabria CSIC-Univ. de CantabriaSantanderSpain
  4. 4.Climate and Arctic ResearchDanish Meteorological InstituteCopenhagen ØDenmark
  5. 5.Institut National de l’Environnement industriel et des risques (INERIS)Verneuil en HalatteFrance
  6. 6.Meteorologiocal InstituteUniversity of BonnBonnGermany
  7. 7.Climate Service Center Germany (GERICS)HamburgGermany
  8. 8.Max Planck Institute for MeteorologyHamburgGermany
  9. 9.Chair of Environmental MeteorologyBrandenburg University of Technology (BTU)Cottbus-SenftenbergGermany
  10. 10.Swedish Meteorological and Hydrological InstituteNorrköpingSweden
  11. 11.LSCE-IPSL CEA/CNRS/UVSQGif sur Yvette CedexFrance

Personalised recommendations