Shallowness of tropical low clouds as a predictor of climate models’ response to warming

Abstract

How tropical low clouds change with climate remains the dominant source of uncertainty in global warming projections. An analysis of an ensemble of CMIP5 climate models reveals that a significant part of the spread in the models’ climate sensitivity can be accounted by differences in the climatological shallowness of tropical low clouds in weak-subsidence regimes: models with shallower low clouds in weak-subsidence regimes tend to have a higher climate sensitivity than models with deeper low clouds. The dynamical mechanisms responsible for the model differences are analyzed. Competing effects of parameterized boundary-layer turbulence and shallow convection are found to be essential. Boundary-layer turbulence and shallow convection are typically represented by distinct parameterization schemes in current models—parameterization schemes that often produce opposing effects on low clouds. Convective drying of the boundary layer tends to deepen low clouds and reduce the cloud fraction at the lowest levels; turbulent moistening tends to make low clouds more shallow but affects the low-cloud fraction less. The relative importance different models assign to these opposing mechanisms contributes to the spread of the climatological shallowness of low clouds and thus to the spread of low-cloud changes under global warming.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Notes

  1. 1.

    Averaging over a longer time period (e.g., years 2–11 after initialization) does not impact our results.

  2. 2.

    For the MPI-ESM-LR and HadGEM-A models, turbulence and condensation are not separated and are combined in the “turbulence” tendencies.

  3. 3.

    Surface buoyancy fluxes B are related to surface fluxes through the relation \(B \propto (\mathrm{SHF}+ 0.61 \, ((c_p \bar{T})/L_v)\,\mathrm{LHF})\) where \(\mathrm{LHF}\) is the surface latent heat flux. In the tropics, the coefficient multiplying \(\mathrm{LHF}\) is close to 0.07 (Cuijpers and Bechtold 1995). We thus use the approximation \(B \propto (\mathrm{SHF} + 0.07\mathrm{LHF})\).

References

  1. Anderson J et al (2004) The new GFDL global atmosphere and land model AM2–LM2: evaluation with prescribed SST simulations. J Clim 17:4641–4673

    Article  Google Scholar 

  2. Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J Atmos Sci 31:674–701

    Article  Google Scholar 

  3. Betts AK (1986) A new convective adjustment scheme. Part I: observational and theoretical basis. Q J R Meteorol Soc 112:677–691

    Google Scholar 

  4. Blackadar AK (1962) The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J Geophys Res 67:3095–3102

    Article  Google Scholar 

  5. Boer G (1993) Climate change and the regulation of the surface moisture and energy budgets. Clim Dyn 8:225–239

    Article  Google Scholar 

  6. Bony S, Dufresne J-L (2005) Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys Res Lett 32:L20806

    Article  Google Scholar 

  7. Bony S, Dufresne J-L, LeTreut H, Morcrette J-J, Senior C (2004) On dynamic and thermodynamic components of cloud changes. Clim Dyn 22:71–86

    Article  Google Scholar 

  8. Bony S, Emanuel KA (2001) A parameterization of the cloudiness associated with cumulus convection; evaluation using TOGA COARE data. J Atmos Sci 58:3158–3183

    Article  Google Scholar 

  9. Bony S et al (2006) How well do we understand and evaluate climate change feedback processes? J Clim 19:3445–3482

    Article  Google Scholar 

  10. Bony S et al (2013) Carbon dioxide and climate: perspectives on a scientific assessment. Climate Science for Serving Society. Springer, Berlin, pp 391–413

    Google Scholar 

  11. Bretherton C, Ferrari R, Legg S (2004) Climate process teams: a new approach to improving climate models. US CLIVAR Var 2:1–6

    Google Scholar 

  12. Bretherton CS, Blossey PN, Jones CR (2013) Mechanisms of marine low cloud sensitivity to idealized climate perturbations: a single-LES exploration extending the CGILS cases. J Adv Model Earth Syst 5:316–337

    Article  Google Scholar 

  13. Brient F, Bony S (2012) How may low-cloud radiative properties simulated in the current climate influence low-cloud feedbacks under global warming? Geophys Res Lett 39:L20807. doi:10.1029/2012GL053265

    Article  Google Scholar 

  14. Brient F, Bony S (2013) Interpretation of the positive low-cloud feedback predicted by a climate model under global warming. Clim Dyn 40:2415–2431

    Article  Google Scholar 

  15. Brinkop S, Roeckner E (1995) Sensitivity of a general circulation model to parameterizations of cloud-turbulence interactions in the atmospheric boundary layer. Tellus A 47:197–220

    Article  Google Scholar 

  16. Cess R et al (1996) Cloud feedback in atmospheric general circulation models: an update. J Geophys Res 101:12 791–12 794

    Article  Google Scholar 

  17. Cess RD et al (1990) Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J Geophys Res 95(601):216

    Google Scholar 

  18. Charney JG et al (1979) Carbon dioxide and climate: a scientific assessment. National Academy of Sciences, Washington

    Google Scholar 

  19. Chepfer H, Bony S, Winker D, Cesana G, Dufresne J, Minnis P, Stubenrauch C, Zeng S (2010) The GCM-oriented CALIPSO cloud product (CALIPSO-GOCCP). J Geophys Res 115

  20. Chikira M, Sugiyama M (2010) A cumulus parameterization with state-dependent entrainment rate. Part I: description and sensitivity to temperature and humidity profiles. J Atmos Sci 67:2171–2193

    Article  Google Scholar 

  21. Cuijpers J, Bechtold P (1995) A simple parameterization of cloud water related variables for use in boundary layer models. J Atmos Sci 52:2486–2490

    Article  Google Scholar 

  22. Dee D et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  23. Del Genio A, Yao M (1993) Efficient cumulus parameterization for long-term climate studies: the GISS scheme. The representation of cumulus convection in numerical models. Meteorol Monogr 46:181–184

    Google Scholar 

  24. Del Genio A, Yao M, Kovari W (1996) A prognostic cloud water parameterization for global climate models. J Clim 9:270–304

    Article  Google Scholar 

  25. Donner LJ et al (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24:3484–3519

    Article  Google Scholar 

  26. Dufresne J-L, Bony S (2008) An assessment of the primary sources of spread of global warming estimates from coupled atmosphere-ocean models. J Clim 21:5135–5144

    Article  Google Scholar 

  27. EarthCARE Mission Advisory Group (2006) Earthcare mission requirement document. Technical report, ESA. http://esamultimedia.esa.int/docs/EarthObservation/EarthCARE_MRD_v5.pdf

  28. Emanuel K (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2329

    Article  Google Scholar 

  29. Emanuel K (1993) A cumulus representation based on the episodic mixing model: the importance of mixing and microphysics in predicting humidity. AMS Meteorol Monogr 24:185–192

    Google Scholar 

  30. Emori S, Nozawa T, Numaguti A, Uno I (2001) Importance of cumulus parameterization for precipitation simulation over East Asia in June. J Meteorol Soc Jpn 79:939–947

    Article  Google Scholar 

  31. Forster PM, Andrews T, Good P, Gregory JM, Jackson LS, Zelinka M (2013) Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J Geophys Res 118:1139–1150

    Google Scholar 

  32. Gettelman A, Kay J, Shell K (2012) The evolution of climate sensitivity and climate feedbacks in the community atmosphere model. J Clim 25:1453–1469

    Article  Google Scholar 

  33. Gregory D, Rowntree P (1990) A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon Weather Rev 118:1483–1506

    Article  Google Scholar 

  34. Gregory J, Webb M (2008) Tropospheric adjustment induces a cloud component in \(\text{ CO }_2\) forcing. J Clim 21:58–71

    Article  Google Scholar 

  35. Hack JJ (1994) Parameterization of moist convection in the National Center for Atmospheric Research community climate model (CCM2). J Geophys Res 99:5551–5568

    Article  Google Scholar 

  36. Hartmann DL, Larson K (2002) An important constraint on tropical cloud-climate feedback. Geophys Res Lett 29:1951–1954

    Article  Google Scholar 

  37. Held IM (1982) On the height of the tropopause and the static stability of the troposphere. J Atmos Sci 39:412–417

    Article  Google Scholar 

  38. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699

    Article  Google Scholar 

  39. Hourdin F et al (2013) LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Clim Dyn 40:2193–2222

    Article  Google Scholar 

  40. Jam A, Hourdin F, Rio C, Couvreux F (2013) Resolved versus parametrized boundary-layer plumes. Part III: derivation of a statistical scheme for cumulus clouds. Boundary Layer Meteorol 147:421–441

    Article  Google Scholar 

  41. Kamae Y, Watanabe M (2012) On the robustness of tropospheric adjustment in CMIP5 models. Geophys Res Lett 39:L23808. doi:10.1029/2012GL054275

    Article  Google Scholar 

  42. Kamae Y, Watanabe M (2013) Tropospheric adjustment to increasing CO2: its timescale and the role of land-sea contrast. Clim Dyn 41:3007–3024

    Article  Google Scholar 

  43. Kawai H (2012) Examples of mechanisms for negative cloud feedback of stratocumulus and stratus in cloud parameterizations. Sci Online Lett Atmos 8:150–154

    Google Scholar 

  44. Laval K, Sadourny R, Serafini Y (1981) Land surface processes in a simplified general circulation model. Geophys Astrophys Fluid Dyn 17:129–150

    Article  Google Scholar 

  45. Le Treut H, Li Z (1991) Sensitivity of an atmospheric general circulation model to prescribed sst changes: feedback effects associated with the simulation of cloud optical properties. Clim Dyn 5:175–187

    Google Scholar 

  46. Lock A, Brown A, Bush M, Martin G, Smith R (2000) A new boundary layer mixing scheme. Part I: scheme description and single-column model tests. Mon Weather Rev 128:3187–3199

    Article  Google Scholar 

  47. Louis J (1979) A parametric model of vertical eddy fluxes in the atmosphere. Bound Layer Meteorol 17:187–202

    Article  Google Scholar 

  48. McFarlane NA, Boer G, Blanchet J, Lazare M (1992) The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. J Clim 5:1013–1044

    Article  Google Scholar 

  49. Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31:1791–1806

    Article  Google Scholar 

  50. Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20:851–875

    Article  Google Scholar 

  51. Mitchell JF, Wilson C, Cunnington W (1987) On CO2 climate sensitivity and model dependence of results. Q J R Meteorol Soc 113:293–322

    Article  Google Scholar 

  52. Moeng C-H, Sullivan PP (1994) A comparison of shear-and buoyancy-driven planetary boundary layer flows. J Atmos Sci 51:999–1022

    Article  Google Scholar 

  53. Moorthi S, Suarez MJ (1992) Relaxed Arakawa–Schubert—a parameterization of moist convection for general circulation models. Mon Weather Rev 120:978–1002

    Article  Google Scholar 

  54. Neale R, Richter J, Conley A, Lauritzen P, Gettelman A, Williamson D (2010) Description of the NCAR Community Atmosphere Model (CAM 4.0). National Center for Atmospheric Research Technical Report

  55. Nuijens L, Medeiros B, Sandu I, Ahlgrimm M (2015) The behavior of trade-wind cloudiness in observations and models: The major cloud components and their variability. J Adv Model Earth Syst 7:600–616.doi:10.1002/2014MS000390

    Article  Google Scholar 

  56. O’Gorman PA, Schneider T (2008) The hydrological cycle over a wide range of climates simulated with an idealized GCM. J Clim 21:3815–3832

    Article  Google Scholar 

  57. Pan D-M, Randall DD (1998) A cumulus parameterization with a prognostic closure. Q J R Meteorol Soc 124:949–981

    Google Scholar 

  58. Pierrehumbert RT (2002) The hydrologic cycle in deep-time climate problems. Nature 419:191–198

    Article  Google Scholar 

  59. Rieck M, Nuijens L, Stevens B (2012) Marine boundary layer cloud feedbacks in a constant relative humidity atmosphere. J Atmos Sci 69:2538–2550

    Article  Google Scholar 

  60. Schneider T, O’Gorman PA, Levine XJ (2010) Water vapor and the dynamics of climate changes. Rev Geophys 48:RG3001. doi:10.1029/2009RG000302

    Article  Google Scholar 

  61. Sherwood SC, Bony S, Dufresne J-L (2014) Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 505:37–42

    Article  Google Scholar 

  62. Singh MS, O’Gorman PA (2012) Upward shift of the atmospheric general circulation under global warming: theory and simulations. J Clim 25:8259–8276

    Article  Google Scholar 

  63. Slingo J (1987) The development and verification of a cloud prediction scheme for the ECMWF model. Q J R Meteorol Soc 113:899–927

    Article  Google Scholar 

  64. Smith R (1990) A scheme for predicting layer clouds and their water content in a general circulation model. Q J R Meteorol Soc 116:435–460

    Article  Google Scholar 

  65. Soden B, Broccoli AJ, Hemler RS (2004) On the use of cloud forcing to estimate cloud feedback. J Clim 17:3661–3665

    Article  Google Scholar 

  66. Stevens B et al (2013) Atmospheric component of the mpi-m earth system model: ECHAM6. J Adv Model Earth Syst 5:146–172

    Article  Google Scholar 

  67. Sundqvist H, Berge E, Kristjansson J (1989) Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon Weather Rev 117:1641–1657

    Article  Google Scholar 

  68. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  69. Thuburn J, Craig GC (1997) GCM tests of theories for the height of the tropopause. J Atmos Sci 54:869–882

    Article  Google Scholar 

  70. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800

    Article  Google Scholar 

  71. Tiedtke M (1993) Representation of clouds in large-scale models. Mon Weather Rev 121:3040–3061

    Article  Google Scholar 

  72. Tomassini L, Voigt A, Stevens B (2014) On the connection between tropical circulation, convective mixing, and climate sensitivity. Q J R Meteorol Soc 141:1404–1416

    Article  Google Scholar 

  73. Vial J, Dufresne J-L, Bony S (2013) On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim Dyn 41:3339–3362

    Article  Google Scholar 

  74. Volodin E, Dianskii N (2004) El Nino in a coupled ocean-atmosphere general circulation model. Russ Meteorol Hydrol 12:1

    Google Scholar 

  75. von Salzen K, McFarlane N, Lazare M (2005) The role of shallow convection in the water and energy cycles of the atmosphere. Clim Dyn 25:671–688

    Article  Google Scholar 

  76. von Salzen K et al (2013) The Canadian fourth generation atmospheric global climate model (CanAM4). Part I: representation of physical processes. Atmos Ocean 51:104–125

    Article  Google Scholar 

  77. Watanabe M, Emori S, Satoh M, Miura H (2009) A PDF-based hybrid prognostic cloud scheme for general circulation models. Clim Dyn 33:795–816

    Article  Google Scholar 

  78. Watanabe M et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335

    Article  Google Scholar 

  79. Watanabe M et al (2012) Using a multi-physics ensemble for exploring diversity in cloud-shortwave feedback in GCMs. J Clim 25:5416–5431

    Article  Google Scholar 

  80. Webb M et al (2006) On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Clim Dyn 27:17–38

    Article  Google Scholar 

  81. Webb MJ, Lock AP (2013) Coupling between subtropical cloud feedback and the local hydrological cycle in a climate model. Clim Dyn 41:1923–1939

    Article  Google Scholar 

  82. Winker D et al (2010) The CALIPSO mission: a global 3D view of aerosols and clouds. Bull Am Meteorol Soc 91:1211–1229

    Article  Google Scholar 

  83. Wu T et al (2010) The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day climate. Clim Dyn 34:123–147

    Article  Google Scholar 

  84. Wyant MC, Bretherton CS, Blossey PN (2009) Subtropical low cloud response to a warmer climate in a superparameterized climate model. Part I: regime sorting and physical mechanisms. J Adv Model Earth Syst 1:1–11

    Article  Google Scholar 

  85. Yamada T (1983) Simulations of nocturnal drainage flows by a q2l turbulence closure model. J Atmos Sci 40:91–106

    Article  Google Scholar 

  86. Yao M-S, Cheng Y (2012) Cloud simulations in response to turbulence parameterizations in the GISS Model E GCM. J Clim 25:4963–4974

    Article  Google Scholar 

  87. Yukimoto S et al (2011) Meteorological Research Institute Earth System Model Version 1 (MRI-ESM1)—model description. Technical Reports of the Meteorological Research Institute 1

  88. Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos Ocean 33:407–446

    Article  Google Scholar 

  89. Zhang GJ, Mu M (2005) Effects of modifications to the Zhang-McFarlane convection parameterization on the simulation of the tropical precipitation in the National Center for Atmospheric Research Community Climate Model, version 3. J Geophys Res 110(D09):109

    Google Scholar 

  90. Zhang MH et al (2013) CGILS: first results from an international project to understand the physical mechanisms of low cloud feedbacks in general circulation models. J Adv Model Earth Syst 5:826–842

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Energy’s Regional and Global Climate Modeling Program under the project “Identifying Robust Cloud Feedbacks in Observations and Model”. We thank Bjorn Stevens, Louise Nuijens, Steve Klein and Peter Caldwell for useful discussions on this topic and two anonymous reviewers for their insightful comments on the manuscript. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1) for producing and making available their model output.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Florent Brient.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brient, F., Schneider, T., Tan, Z. et al. Shallowness of tropical low clouds as a predictor of climate models’ response to warming. Clim Dyn 47, 433–449 (2016). https://doi.org/10.1007/s00382-015-2846-0

Download citation

Keywords

  • Low-clouds
  • Climate sensitivity
  • Tropics
  • Convection
  • Turbulence