Skip to main content

Inter-model diversity in jet stream changes and its relation to Arctic climate in CMIP5

Abstract

We examined how coupled general circulation models (CGCMs) simulate changes in the jet stream differently under greenhouse warming, and how this inter-model diversity is related to the simulated Arctic climate changes by analyzing the simulation of the Coupled Model Intercomparison Project Phase 5. Although the jet stream in the multi-model ensemble mean shifts poleward, a considerable diversity exists among the 34 CGCMs. We found that inter-model differences in zonal wind responses, especially in terms of meridional shift of the midlatitude jet, are highly dependent on Arctic surface warming and lower stratospheric cooling. Specifically, the midlatitude jet tends to shift relatively equatorward (poleward) in the models with stronger (weaker) Arctic surface warming, whereas the jet tends to shift relatively poleward (equatorward) in the models with stronger (weaker) Arctic lower stratospheric cooling.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Alexeev VA, Jackson CH (2013) Polar amplification: is atmospheric heat transport important? Clim Dyn 41:533–547. doi:10.1007/s00382-012-1601-z

    Article  Google Scholar 

  2. Arblaster JM, Meehl GA, Karoly DJ (2011) Future climate change in the Southern Hemisphere: competing effects of ozone and greenhouse gases. Geophys Res Lett 38:L02701. doi:10.1029/2010GL045384

    Article  Google Scholar 

  3. Baldwin MP, Stephenson DB, Jolliffe IT (2009) Spatial weighting and iterative projection methods for EOFs. J Clim 22:234–243

    Article  Google Scholar 

  4. Barnes EA, Polvani L (2013) Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J Clim 26:7117–7135

    Article  Google Scholar 

  5. Bracegirdle TJ, Shuckburgh E, Sallee J-B, Wang Z, Meijers AJS, Bruneau N, Phillips T, Wilcox LJ (2013) Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence. J Geophys Res Atmos 118:547–562. doi:10.1002/jgrd.50153

    Article  Google Scholar 

  6. Butler AH, Thompson DWJ, Heikes R (2010) The steady-state atmospheric circulation response to climate change-like thermal forcings in a simple general circulation model. J Clim 23:3474–3496

    Article  Google Scholar 

  7. Ceppi P, Zelinka MD, Hartmann DL (2014) The response of the Southern Hemispheric eddy-driven jet to future changes in shortwave radiation in CMIP5. Geophys Res Lett. doi:10.1002/2014GL060043

    Google Scholar 

  8. Chavaillaz Y, Codron F, Kageyama M (2013) Southern westerlies in LGM and future (RCP4.5) climates. Clim Past 9:517–524. doi:10.5194/cp-9-517-2013

    Article  Google Scholar 

  9. Choi D-H, Kug J-S, Kwon W-T, Jin F-F, Baek H-J, Min S-K (2010) Arctic oscillation responses to greenhouse warming and role of synoptic eddy feedback. J Geophys Res 115:D17013. doi:10.1029/2010JD014160

    Google Scholar 

  10. Chung CE, Räisänen P (2011) Origin of the arctic warming in climate models. Geophys Res Lett 38:L21704. doi:10.1029/2011GL049816

    Article  Google Scholar 

  11. Cohen J et al (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7:627–637. doi:10.1038/ngeo2234

    Article  Google Scholar 

  12. Delcambre SC, Lorenz DJ, Vimont DJ, Martin JE (2013) Diagnosing northern hemisphere jet portrayal in 17 CMIP3 global climate models: twenty-first-century projections. J Clim 26:4930–4946

    Article  Google Scholar 

  13. Deser CR, Tomas MA, Lawrence D (2010) The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J Clim 23:333–351

    Article  Google Scholar 

  14. Francis JA, Chan W, Leathers DJ, Miller JR, Veron DE (2009) Winter Northern Hemisphere weather patterns remember summer Arctic seaice extent. Geophys Res Lett 36:L07503. doi:10.1029/2009GL037274

    Article  Google Scholar 

  15. Fyfe JC, Lorenz DJ (2005) Characterizing midlatitude jet variability: lessons from a simple GCM. J Clim 18:3400–3404. doi:10.1175/JCLI3486.1

    Article  Google Scholar 

  16. Gerber EP, Son S-W (2014) Quantifying the summertime response of the austral jet stream and hadley cell to stratospheric ozone and greenhouse gases. J Clim 27:5538–5559

    Article  Google Scholar 

  17. Graversen RG, Wang M (2009) Polar amplification in a coupled climate model with locked albedo. Clim Dyn 33:629–643. doi:10.1007/s00382-009-0535-6

    Article  Google Scholar 

  18. Graversen RG, Mauritsen T, Tjernstrom M, Kallen E, Svensson G (2008) Vertical structure of recent arctic warming. Nature 451(7174):53–56. doi:10.1038/nature06502

    Article  Google Scholar 

  19. Harvey BJ, Shaffrey LC, Woollings TJ (2013) Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Clim Dyn. doi:10.1007/s00382-013-1883-9

    Google Scholar 

  20. Honda M, Inoue J, Yamane S (2009) Influence of low Arctic sea ice minima on anomalously cold Eurasian winters. Geophys Res Lett 36:L08707. doi:10.1029/2008GL037079

    Article  Google Scholar 

  21. Hwang Y-T, Frierson DMW, Kay JE (2011) Coupling between Arctic feedbacks and changes in poleward energy transport. Geophys Res Lett 38:L17704. doi:10.1029/2011GL048546

    Google Scholar 

  22. Jeong J-H, Kug J-S, Kim B-M, Linderholm H, Chen D, Jun S-Y (2014) Intensified Arctic warming under greenhouse warming by vegetation–atmosphere–sea ice interaction. Environ Res Lett 9:094007. doi:10.1088/1748-9326/9/9/094007

    Article  Google Scholar 

  23. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–472

    Article  Google Scholar 

  24. Kidston J, Gerber EP (2010) Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys Res Lett 37:L09708. doi:10.1029/2010GL042873

    Google Scholar 

  25. Koenigk T, Brodeau L (2014) Ocean heat transport into the Arctic in the twentieth and twenty-first century in EC-Earth. Clim Dyn 42:3101–3120. doi:10.1007/s00382-013-1821-x

    Article  Google Scholar 

  26. Kug J-S, Jin F-F (2009) Left-hand rule for synoptic eddy feedback on low-frequency flow. Geophys Res Lett 36:L05709. doi:10.1029/2008GL036435

    Article  Google Scholar 

  27. Kug J-S, Choi D-H, Jin F-F, Kwon W-T, Ren H-L (2010a) Role of synoptic eddy feedback on polar climate responses to the anthropogenic forcing. Geophys Res Lett 37:L14704. doi:10.1029/2010GL043673

    Google Scholar 

  28. Kug J-S, Jin F-F, Park J, Ren H-L, Kang I-S (2010b) A general rule for synoptic-eddy feedback onto the low-frequency flow. Clim Dyn 35:1011–1026. doi:10.1007/s00382-009-0606-8.Liu

    Article  Google Scholar 

  29. Kug J-S, Jeong J-H, Jang Y-S, Kim B-M, Folland C, Min S-K, Son S-W (2015) Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat Geosci. doi:10.1038/NGEO2517

    Google Scholar 

  30. Lambert F, Kug J-S, Park RJ, Mahowald N, Abe-Ouchi A, O’ishi R, Takemura T, Lee JH (2013) The role of mineral dust aerosols in polar amplification. Nat Clim Changes 3:487–491. doi:10.1038/NCLIMATE1785

    Article  Google Scholar 

  31. Lee S (2014) A theory for polar amplification from a general circulation perspective. Asia Pac J Atmos Sci 50(1):31–43

    Article  Google Scholar 

  32. Liu Y, Key JR, Wang X (2008) The influence of changes in cloud cover on recent surface temperature trends in the Arctic. J Clim 21:705–715

    Article  Google Scholar 

  33. Lorenz DJ, DeWeaver ET (2007) Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J Geophys Res 112:D10119. doi:10.1029/2006JD008087

    Article  Google Scholar 

  34. Lorenz DJ, Hartmann DL (2003) Eddy-zonal flow feedback in the Northern Hemisphere winter. J Clim 16:1212–1227

    Article  Google Scholar 

  35. Manabe S, Wetherald RT (1967) Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J Atmos Sci 24:241–259

    Article  Google Scholar 

  36. Manabe S, Wetherald RT (1980) On the distribution of climate change resulting from an increase of CO2 content of the atmosphere. J Atmos Sci 37:99–118

    Article  Google Scholar 

  37. Manzini E et al (2014) Northern winter climate change: assessment of uncertainty in CMIP5 projections related to stratosphere–troposphere coupling. J Geophys Res Atmos. doi:10.1002/2013JD021403

    Google Scholar 

  38. North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Wea Rev 110:699–706

    Article  Google Scholar 

  39. Overland JE, Wang M (2010) Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus 62A:1–9

    Article  Google Scholar 

  40. Overland JE, Wood K, Wang M (2011) Warm Arctic-cold continents: climate impacts of the newly open Arctic sea. Polar Res 30:15787. doi:10.3402/polar.v30i0.15787

    Article  Google Scholar 

  41. Park J-Y, Kug J-S, Bader J, Kwon M-H (2015) Amplified Arctic warming by phytoplankton under greenhouse warming. PNAS 112:5921–5926

    Article  Google Scholar 

  42. Polyakov IV, Alekseev GV, Bekryaev RV, Bhatt U, Colony RL, Johnson MA, Karklin VP, Makshtas AP, Walsh D, Yulin AV (2002) Observationally based assessment of polar amplification of global warming. Geophys Res Lett 29(18):1878. doi:10.1029/2001GL011111

    Article  Google Scholar 

  43. Power SB, Delage F, Colman R, Moise A (2012) Consensus on twenty-first-century rainfall projections in climate models more widespread than previously thought. J Clim 25:3792–3809

    Article  Google Scholar 

  44. Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464(7293):1334–1337. doi:10.1038/nature09051

    Article  Google Scholar 

  45. Serreze MC, Francis JA (2006) The Arctic amplification debate. Clim Change 76:241–264. doi:10.1007/s10584-005-9017-y

    Article  Google Scholar 

  46. Serreze MC, Barrett AP, Stroeve JC, Kindig DN, Holland MM (2009) The emergence of surface-based Arctic amplification. Cryosphere 3:11–19

    Article  Google Scholar 

  47. Swart N, Fyfe J (2012) Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys Res Lett 39:L16711. doi:10.1029/2012GL052810

    Article  Google Scholar 

  48. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  49. Wilcox LJ, Charlton-Perez AJ, Gray LJ (2012) Trends in austral jet position in ensembles of high- and low-top CMIP5 models. J Geophys Res 117:D13115. doi:10.1029/2012JD017597

    Article  Google Scholar 

  50. Woollings T (2008) Vertical structure of anthropogenic zonal-mean atmospheric circulation change. Geophys Res Lett 35:L19702. doi:10.1029/2008GL034883

    Article  Google Scholar 

  51. Xu J, Powell AM, Zhao L (2013) Intercomparison of temperature trends in IPCC CMIP5 simulations with observations, reanalyses and CMIP3 models. Geosci Model Dev Discuss 6:1705–1714. doi:10.5194/gmd-6-1705-2013

    Article  Google Scholar 

  52. Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32:L18701. doi:10.1029/2005GL023684

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. This study was supported by Korea Meteorological Administration Research and Development Program under Grant KMIPA 2015-2092, and National Research Foundation (NRF-2014R1A2A2A01003827). H. S. Min was supported by Korea Institute of Ocean Science and Technology (PE99293).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jong-Seong Kug.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yim, B.Y., Min, H.S. & Kug, JS. Inter-model diversity in jet stream changes and its relation to Arctic climate in CMIP5. Clim Dyn 47, 235–248 (2016). https://doi.org/10.1007/s00382-015-2833-5

Download citation

Keywords

  • Arctic amplification
  • Jet stream
  • Polar cap cooling