A model based investigation of the relative importance of CO2-fertilization, climate warming, nitrogen deposition and land use change on the global terrestrial carbon uptake in the historical period

Abstract

In this paper, using the fully coupled NCAR Community Earth System Model (CESM1.0.4), we investigate the relative importance of CO2-fertilization, climate warming, anthropogenic nitrogen deposition, and land use and land cover change (LULCC) for terrestrial carbon uptake during the historical period (1850–2005). In our simulations, between the beginning and end of this period, we find an increase in global net primary productivity (NPP) on land of about 4 PgCyr−1 (8.2 %) with a contribution of 2.3 PgCyr−1 from CO2-fertilization and 2.0 PgCyr−1 from nitrogen deposition. Climate warming also causes NPP to increase by 0.35 PgCyr−1 but LULCC causes a decline of 0.7 PgCyr−1. These results indicate that the recent increase in vegetation productivity is most likely driven by CO2 fertilization and nitrogen deposition. Further, we find that this configuration of CESM projects that the global terrestrial ecosystem has been a net source of carbon during 1850–2005 (release of 45.1 ± 2.4 PgC), largely driven by historical LULCC related CO2 fluxes to the atmosphere. During the recent three decades (early 1970s to early 2000s), however, our model simulations project that the terrestrial ecosystem acts as a sink, taking up about 10 PgC mainly due to CO2 fertilization and nitrogen deposition. Our results are in good qualitative agreement with recent studies that indicate an increase in vegetation production and water use efficiency in the satellite era and that the terrestrial ecosystem has been a net sink for carbon in recent decades.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Ahlstrom A, Schurgers G, Arneth A, Smith B (2012) Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections. Environ Res Lett 7(044008):1–9

    Google Scholar 

  2. Anav A, Friedlingstein P, Beer C, Ciais P, Harper A, Jones C, Murray-Tortarolo G, Papale D, Parazoo NC, Peylin P et al (2015) Spatio-temporal patterns of terrestrial gross primary production: a review. Rev Geophys. doi:10.1002/2015RG000483

    Google Scholar 

  3. Arneth et al (2010) Terrestrial biogeochemical feedbacks in the climate system. Nat Geosci 3:525–532. doi:10.1038/ngeo905

    Article  Google Scholar 

  4. Arora VK et al (2013) Carbon-concentration and carbon-climate feedbacks in CMIP5 earth system models. J Clim 26:5289–5314

    Article  Google Scholar 

  5. Bala G, Krishna S, Devaraju N, Cao L, Caldeira K, Nemani R (2012) An estimate of equilibrium sensitivity of global terrestrial carbon cycle using NCAR CCSM4. Clim Dyn. doi:10.1007/s00382-012-1495-9

    Google Scholar 

  6. Bala G, Devaraju N, Chaturvedi RK, Caldeira K, Nemani R (2013) Nitrogen deposition: how important is it for global terrestrial carbon uptake? Biogeosciences 10:7147–7160

    Article  Google Scholar 

  7. Ballantyne AP, Alden CB, Miller JB, Tans PP, White JWC (2012) Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488(7409):70–72. doi:10.1038/nature11299

    Article  Google Scholar 

  8. Beck PS, Goetz SJ (2011) Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ Res Lett 6(4):045501

    Article  Google Scholar 

  9. Beer C, Ciais P, Reichstein M et al (2009) Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Global Biogeochem Cycles 23:GB2018. doi:10.1029/2008GB003233

    Article  Google Scholar 

  10. Bodman RW et al (2013) Uncertainty in temperature projections reduced using carbon cycle and climate observations. Nat Clim Change 3:725–729

    Article  Google Scholar 

  11. Boer GJ, Arora V (2009) Temperature and concentration feedbacks in the carbon cycle. Geophys Res Lett 36:L02704. doi:10.1029/L036220

    Article  Google Scholar 

  12. Bonan GB, Levis S (2010) Quantifying carbon–nitrogen feedbacks in the Community Land Model (CLM4). Geophys Res Lett 37:L0740. doi:10.1029/2010GL042430

    Article  Google Scholar 

  13. Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396(6711):570–572

    Article  Google Scholar 

  14. Boysen LR, Brovkin V, Arora VK, Cadule P, de Noblet-Ducoudré N, Kato E, Pongratz J, Gayler V (2014) Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle. Earth Syst Dyn 5:309–319. doi:10.5194/esd-5-309-2014

    Article  Google Scholar 

  15. Brovkin V, Boysen L, Arora VK, Boisier JP, Cadule P, Chini L, Weiss M et al (2013) Effect of anthropogenic land-use and land-cover changes on climate and land carbon storage in CMIP5 projections for the twenty-first century. J Clim 26(18):6859–6881

    Article  Google Scholar 

  16. Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104(47):18866–18870

    Article  Google Scholar 

  17. Cao M, Prince SD, Shugart HH (2002) Increasing terrestrial carbon uptake from the 1980s to the 1990s with changes in climate and atmospheric CO2. Glob Biogeochem Cycles 16(4):1069. doi:10.1029/2001GB001553

    Article  Google Scholar 

  18. Chameides WL, Kasibhatla PS, Yienger JJ, Levy H II, Moxim WJ (1994) The growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production. Science 264:74–78

    Article  Google Scholar 

  19. Ciais P et al (2013) Carbon and other biogeochemical cycles. Climate change 2013: the physical science basis. In: Stocker TF et al (eds) Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge Univ Press, Cambridge, pp 465–570

    Google Scholar 

  20. Collatz GJ, Ribas-Carbo M, Berry JA (1992) Coupled photosynthesisstomatal conductance model for leaves of C4 plants. Aust J Plant Physiol 19(5):519–538

  21. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408(6809):184–187

    Article  Google Scholar 

  22. Cramer W et al (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Change Biol 7(4):357–373

    Article  Google Scholar 

  23. Dalmonech D, Zaehle S, Schürmann GJ, Brovkin V, Reick C, Schnur R (2015) Separation of the effects of land and climate model errors on simulated contemporary land carbon cycle trends in the MPI earth system model version 1. J Clim 28:272–291

    Article  Google Scholar 

  24. de Vries W (2009) Assessment of the relative importance of nitrogen deposition and climate change on the sequestration of carbon by forests in Europe: an overview. Introd For Ecol Manag 258:1–302

    Article  Google Scholar 

  25. de Vries W, Solberg S, Dobbertin M, Sterba H, Laubhahn D, Reinds GJ, Nabuurs GJ, Gundersen P, Sutton MA (2008) Ecologically implausible carbon response? Nature 451:E1–E3

    Article  Google Scholar 

  26. Devaraju N, Bala G, Nemani R (2015) Modelling the influence of land-use changes on biophysical and biochemical interactions at regional and global scales. Plant Cell Environ 38:1931–1946. doi:10.1111/pce.12488

    Article  Google Scholar 

  27. Dolman AJ, van der Werf GR, van der Molen MK, Ganssen G, Erisman JW, Strengers B (2010) A Carbon cycle science update since IPCC AR-4. Ambio 39:402–412

    Article  Google Scholar 

  28. Donohue RJ, Roderick ML, McVicar TR, Farquhar GD (2013) CO2 fertilisation has increased maximum foliage cover across the globe’s warm, arid environments. Geophys Res Lett. doi:10.1002/grl.50563

    Google Scholar 

  29. Fensholt R, Langanke T, Rasmussen R, Reenberg A, Prince SD, Tucker CJ, Scholes RJ, Bao Le Q, Bondeau A, Eastman R, Epstein HE, Gaughan AE, Hellden U, Mbow C, Olsson L, Paruelo J, Schweitzer C, Seaquist J, Wessels K (2012) Greenness in semi-arid areas across the globe 1981–2007— an earth observing satellite based analysis of trends and drivers. Remote Sens Environ 121:144–158

  30. Fisher JB et al (2013) African tropical rainforest net carbon dioxide fluxes in the twentieth century. Philos Trans R Soc B Biol Sci 368(1625):20120376

    Article  Google Scholar 

  31. Friedlingstein P et al (2006) Climate-carbon cycle feedback analysis: results from the (CMIP)-M-4 model intercomparison. J Clim 19(14):3337–3353

    Article  Google Scholar 

  32. Friedlingstein P, Houghton RA, Marland G, Hackler J, Boden TA, Conway TJ, Canadell JG, Raupach MR, Ciais P, Le Quéré C (2010) Update on CO2 emissions. Nat Geosci 3(12):811–812. doi:10.1038/ngeo1022

    Article  Google Scholar 

  33. Friedlingstein P, Meinshausen M, Arora VK, Jones CD, Anav A, Liddicoat SK, Knutti R (2014) Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J Clim 27:511–526

    Article  Google Scholar 

  34. Galloway JN et al (2004) nitrogen cycles: past, present, and future. Biogeochemistry 70(2):153–226

    Article  Google Scholar 

  35. Gerber S, Hedin LO, Keel SG, Pacala SW, Shevliakova E (2013) Land use change and nitrogen feedbacks constrain the trajectory of the land carbon sink. Geophys Res Lett 40:5218–5222. doi:10.1002/grl.50957

    Article  Google Scholar 

  36. Govindasamy B, Thompson S, Mirin A, Wickett M, Caldeira K, Delire C (2005) Increase of carbon cycle feedback with climate sensitivity: results from a coupled climate and carbon cycle model. Tellus B 57(2):153–163

    Article  Google Scholar 

  37. Hashimoto H, Nemani RR, White MA, Jolly WM, Piper SC, Keeling CD, Myneni RB, Running SW (2004) El Nin ̃o – Southern Oscillation – induced variability in terrestrial carbon cycling. J Geophys Res 109:D23110. doi:10.1029/2004JD004959

    Article  Google Scholar 

  38. Hayes DJ, McGuire AD, Kicklighter DW, Gurney KR, Burnside TJ, Melillo JM (2011) Is the northern high latitude land-based CO2 sink weakening? Global Biogeochem Cycles 25:GB3018. doi:10.1029/2010GB003813

    Article  Google Scholar 

  39. Holland EA, Braswell BH, Lamarque J-F, Townsend A, Sulzman J, Müller J-F, Dentener F, Brasseur G, Levy H II, Penner JE, Roelofs GJ (1997) Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. J Geophys Res Atmos 102:15849–15866

    Article  Google Scholar 

  40. Horowitz LW, Walters S, Mauzerall DL, Emmons LK, Rasch PJ, Granier C, Tie X, Lamarque J.-F, Schultz MG, Tyndall GS, Orlando JJ, Brasseur GP (2003) A global simulation of tropospheric ozone and related tracers: description and evaluation of MOZART, version 2. J Geophys Res-Atmos 108:4784. doi:10.1029/2002JD002853

  41. Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quéré C, Ramankutty N (2012) Carbon emissions from land use and land-cover change. Biogeosciences 9:5125–5142. doi:10.5194/bg-9-5125-2012

    Article  Google Scholar 

  42. Hu Z, Yu G, Fu Y et al (2008) Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China. Glob Change Biol 14:1609–1619

    Article  Google Scholar 

  43. Huang M, Piao S, Sun Y, Ciais P, Cheng L, Mao J, Poulter B, Shi X, Zeng Z, Wang Y (2015) Change in terrestrial ecosystem water-use efficiency over the last three decades. Glob Change Biol. doi:10.1111/gcb.12873

    Google Scholar 

  44. Hurrell JW et al (2013) The community earth system model: a framework for collaborative research. Bull Am Meteorol Soc 94:1339–1360

  45. Hurtt GC, Frolking S, Fearon MG, Moore B, Shevliakova E, Malyshev S, Pacala SW, Houghton RA (2006) The under pinnings of land-use history: three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands. Glob Change Biol 12:1208–1229. doi:10.1111/j.1365-2486.2006.01150.x

    Article  Google Scholar 

  46. Ichii K, Kondo M, Okabe Y, Ueyama M, Kobayashi H, Lee S-J, Saigusa N, Zhu Z, Myneni RB (2013) Recent changes in terrestrial gross primary productivity in Asia from 1982 to 2011. Remote Sens 5(11):6043–6062

    Article  Google Scholar 

  47. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 1535. doi:10.1017/CBO9781107415324

  48. Jain A, Yang XJ, Kheshgi H, McGuire AD, Post W, Kicklighter D (2009) Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors. Glob Biogeochem Cycles 23(GB4028):1–13

    Google Scholar 

  49. Janssens IA et al (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3:315–322

    Article  Google Scholar 

  50. Jones C, Jason L, Spencer L, Betts R (2009) Committed terrestrial ecosystem changes due to climate change. Nat Geosci 2:484–487

    Article  Google Scholar 

  51. Jones C, Jason L, Spencer L, Betts R (2010) Role of terrestrial ecosystems in determining CO2 stbilization and recovery behaviour. Tellus Ser B Chem Phys Meteorol 62(5):682–699

    Article  Google Scholar 

  52. Joos F, Sarmiento JL, Siegenthaler U (1991) Estimates of the effect of Southern-Ocean iron fertilization on atmospheric CO2 concentrations. Nature 349(6312):772–775

    Article  Google Scholar 

  53. Kloster S et al (2010) Fire dynamics during the 20th century simulated by the Community Land Model. Biogeosciences 7(6):1877–1902

    Article  Google Scholar 

  54. Krinner G et al (2005) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Biogeochem Cycles 19:1–33

    Article  Google Scholar 

  55. Lawrence DM et al (2011) Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J Adv Model Earth Syst 3:M03001. doi:10.1029/2011ms000045

    Google Scholar 

  56. Lawrence PJ et al (2012) Simulating the biogeochemical and biogeophysical impacts of transient land cover change and wood harvest in the Community Climate System Model (CCSM4) from 1850 to 2100. J Clim 25:3071–3095

    Article  Google Scholar 

  57. Le Quéré C et al (2003) Two decades of ocean CO2 sink and variability. Tellus Ser B 55:649–656

    Article  Google Scholar 

  58. Le Quéré C et al (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2(12):831–883

    Article  Google Scholar 

  59. Le Quéré C et al (2013) The global carbon budget 1959–2011. Earth Syst Sci Data 5:165–185. doi:10.5194/essd-5-165-2013

    Article  Google Scholar 

  60. Le Quéré C et al (2014) Global carbon budget 2013. Earth Syst Sci Data 6:235–263. doi:10.5194/essd-6-235-2014

    Article  Google Scholar 

  61. Lloyd J, Taylor JA (1994) On the temperature-dependence of soil respiration. Funct Ecol 8(3):315–323

    Article  Google Scholar 

  62. Ma J, Yan X, Dong W, Chou J (2015) Gross primary production of global forest ecosystems has been overestimated. Nat Sci Rep 5:10820. doi:10.1038/srep10820

    Article  Google Scholar 

  63. Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:848–850

    Article  Google Scholar 

  64. Matthews HD, Weaver AJ, Meissner KJ (2005) Terrestrial carbon cycle dynamics under recent and future climate change. J Clim 18:1609–1628

    Article  Google Scholar 

  65. McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo L, Hayes DJ, Heimann M, Lorenson TD, Macdon-ald RW, Roulet N (2009) Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr 79:523–555

    Article  Google Scholar 

  66. Murray-Tortarolo G et al (2013) Evaluation of land surface models in reproducing satellite-derived LAI over the high-latitude Northern Hemisphere part I: uncoupled DGVMs. Remote Sens 5(10):4819–4838

    Article  Google Scholar 

  67. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    Article  Google Scholar 

  68. Neale RB, Chen CC, Gettelman A, Lauritzen PH, Park S, Williamson DL, Conley AJ, Garcia R, Kinnison D, Lamarque JF, Marsh D, Mills M, Smith AK, Tilmes S, Vitt F, Morrison H, Cameron-Smith P, Collins WD, Iacono MJ, Easter RC, Ghan SJ, Liu XH, Rasch PJ, Taylor MA (2010) Description of the NCAR Community Atmosphere Model (CAM5.0). Tech. Rep. NCAR/TN-486-STR, NCAR. http://www.cesm.ucar.edu/models/cesm1.0/cam/. Last Access 8 Jan 2013

  69. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300(5625):1560–1563

    Article  Google Scholar 

  70. Norby RJ, Warrena JM, Iversena CM, Medlynb BE, McMurtriec RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci 107(45):19368–19373

    Article  Google Scholar 

  71. Oleson KW, Lawrence DM, Bonan GB, Flanner MG, Kluzek E, Lawrence PJ, Levis S, Swenson SC, Thornton P et al (2010) Technical description of version 4.0 of the Community Land Model (CLM) Rep. National Center for Atmospheric Research, Boulder, p 266

    Google Scholar 

  72. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  Google Scholar 

  73. Piao S, Friedlingstein P, Ciais P, Viovy N, Demarty J (2007) Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob Biogeochem Cycles 21:GB3018. doi:10.1029/2006GB002888

    Google Scholar 

  74. Piao S et al (2013) Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob Change Biol 19(7):2117–2132

    Article  Google Scholar 

  75. Pongratz J, Reick CH, Houghton RA, House JI (2014) Terminology as a key uncertainty in net land use and land cover change carbon flux estimates. Earth Syst Dyn 5:177–195. doi:10.5194/esd-5-177-2014

    Article  Google Scholar 

  76. Ponton S, Flanagan LB, Alstad KP et al (2006) Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Glob Change Biol 12:294–310

    Article  Google Scholar 

  77. Randerson JT et al (2009) Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models. Glob Change Biol 15(10):2462–2484

    Article  Google Scholar 

  78. Reay DS, Dentener F, Smith P, Grace J, Feely RA (2008) Global nitrogen deposition and carbon sinks. Nat Geosci 1:430–437

    Article  Google Scholar 

  79. Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H (2004) A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54(6):547–560

    Article  Google Scholar 

  80. Schimel D, Stephens BB, Fisher JB (2014) Effect of increasing CO2 on the terrestrial carbon cycle. Proc Natl Acad Sci 112(2):436–441

    Article  Google Scholar 

  81. Schuur EAG et al (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58(8):701–714

    Article  Google Scholar 

  82. Schuur EAG et al (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459(7246):556–559

    Article  Google Scholar 

  83. Schuur EAG et al (2015) Climate change and the permafrost carbon feedback. Nature 520:171–179

    Article  Google Scholar 

  84. Thompson SL et al (2004) Quantifying the effects of CO2-fertilized vegetation on future global climate and carbon dynamics. Geophys Res Lett 31(23):L23211. doi:10.1029/2004GL021239

    Article  Google Scholar 

  85. Thornton PE et al (2002) Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needle leaf forests. Agric For Meteorol 113(1–4):185–222

    Article  Google Scholar 

  86. Thornton PE, Lamarque JF, Rosenbloom NA, Mahowald NM (2007) Influence of carbon–nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Glob Biogeochem Cycles 21:GB4018. doi:10.1029/2006GB002868

    Article  Google Scholar 

  87. Thornton PE, Doney SC, Lindsay K, Moore JK, Mahowald N, Randerson JT, Fung I, Lamarque JF, Feddema JJ, Lee YH (2009) Carbon–nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere–ocean general circulation model. Biogeosciences 6(10):2099–2120

    Article  Google Scholar 

  88. Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78(12):2771–2777

    Article  Google Scholar 

  89. Zaehle S, Dalmonech D (2011) Carbon–nitrogen interactions on land at global scales: current understanding in modelling climate biosphere feedbacks. Curr Opin Environ Sustain 3:311–320

    Article  Google Scholar 

  90. Zaehle S et al (2010) Carbon and nitrogen cycle dynamics in the O-CN land surface model, II: the role of the nitrogen cycle in the historical terrestrial C balance. Glob Biogeochem Cycles 24:1–14

    Google Scholar 

  91. Zaehle S, Ciais P, Friend AD, Prieur V (2011) Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions. Nat Geosci 4:601–605

    Article  Google Scholar 

  92. Zeng N, Qian HF, Munoz E, Iacono R (2004) How strong is carbon cycle-climate feedback under global warming? Geophys Res Lett 31:L20203. doi:10.1029/2004GL020904

    Article  Google Scholar 

  93. Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–943

    Article  Google Scholar 

  94. Zhu Q, Jiang H, Peng C, Liu J, Wei X, Fang X, Liu S, Zhou G, Yu S (2011) Evaluating the effects of future climate change and elevated CO2 on the water use efficiency in terrestrial ecosystems of China, Ecolo Model 222(14):2414–2429

Download references

Acknowledgments

We thank the funding from Department of Science and Technology under the Grant DST0948. Dr. Devaraju is supported by the Divecha Center for Climate Change. Computations were carried out at CAOS HPC facility funded by FIST, Department of Science and Technology and Divecha Center for Climate Change.

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. Devaraju.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Devaraju, N., Bala, G., Caldeira, K. et al. A model based investigation of the relative importance of CO2-fertilization, climate warming, nitrogen deposition and land use change on the global terrestrial carbon uptake in the historical period. Clim Dyn 47, 173–190 (2016). https://doi.org/10.1007/s00382-015-2830-8

Download citation

Keywords

  • Terrestrial carbon uptake
  • CO2 fertilization
  • Nitrogen deposition
  • Climate change
  • Land use land cover change
  • Net primary productivity